Spaces:
Running
Running
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for object_detection.utils.config_util.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import tensorflow.compat.v1 as tf | |
from google.protobuf import text_format | |
from lstm_object_detection.protos import pipeline_pb2 as internal_pipeline_pb2 | |
from lstm_object_detection.utils import config_util | |
from object_detection.protos import pipeline_pb2 | |
def _write_config(config, config_path): | |
"""Writes a config object to disk.""" | |
config_text = text_format.MessageToString(config) | |
with tf.gfile.Open(config_path, "wb") as f: | |
f.write(config_text) | |
class ConfigUtilTest(tf.test.TestCase): | |
def test_get_configs_from_pipeline_file(self): | |
"""Test that proto configs can be read from pipeline config file.""" | |
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") | |
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() | |
pipeline_config.model.ssd.num_classes = 10 | |
pipeline_config.train_config.batch_size = 32 | |
pipeline_config.train_input_reader.label_map_path = "path/to/label_map" | |
pipeline_config.eval_config.num_examples = 20 | |
pipeline_config.eval_input_reader.add().queue_capacity = 100 | |
pipeline_config.Extensions[ | |
internal_pipeline_pb2.lstm_model].train_unroll_length = 5 | |
pipeline_config.Extensions[ | |
internal_pipeline_pb2.lstm_model].eval_unroll_length = 10 | |
_write_config(pipeline_config, pipeline_config_path) | |
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) | |
self.assertProtoEquals(pipeline_config.model, configs["model"]) | |
self.assertProtoEquals(pipeline_config.train_config, | |
configs["train_config"]) | |
self.assertProtoEquals(pipeline_config.train_input_reader, | |
configs["train_input_config"]) | |
self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) | |
self.assertProtoEquals(pipeline_config.eval_input_reader, | |
configs["eval_input_configs"]) | |
self.assertProtoEquals( | |
pipeline_config.Extensions[internal_pipeline_pb2.lstm_model], | |
configs["lstm_model"]) | |
def test_create_pipeline_proto_from_configs(self): | |
"""Tests that proto can be reconstructed from configs dictionary.""" | |
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") | |
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() | |
pipeline_config.model.ssd.num_classes = 10 | |
pipeline_config.train_config.batch_size = 32 | |
pipeline_config.train_input_reader.label_map_path = "path/to/label_map" | |
pipeline_config.eval_config.num_examples = 20 | |
pipeline_config.eval_input_reader.add().queue_capacity = 100 | |
pipeline_config.Extensions[ | |
internal_pipeline_pb2.lstm_model].train_unroll_length = 5 | |
pipeline_config.Extensions[ | |
internal_pipeline_pb2.lstm_model].eval_unroll_length = 10 | |
_write_config(pipeline_config, pipeline_config_path) | |
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) | |
pipeline_config_reconstructed = ( | |
config_util.create_pipeline_proto_from_configs(configs)) | |
self.assertEqual(pipeline_config, pipeline_config_reconstructed) | |
if __name__ == "__main__": | |
tf.test.main() | |