NCTCMumbai's picture
Upload 2571 files
0b8359d
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for lstm_object_detection.lstm.lstm_cells."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from lstm_object_detection.lstm import lstm_cells
class BottleneckConvLstmCellsTest(tf.test.TestCase):
def test_run_lstm_cell(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = False
inputs = tf.zeros([4, 10, 10, 3], dtype=tf.float32)
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units)
init_state = cell.init_state(
state_name, batch_size, dtype, learned_state)
output, state_tuple = cell(inputs, init_state)
self.assertAllEqual([4, 10, 10, 15], output.shape.as_list())
self.assertAllEqual([4, 10, 10, 15], state_tuple[0].shape.as_list())
self.assertAllEqual([4, 10, 10, 15], state_tuple[1].shape.as_list())
def test_run_lstm_cell_with_flattened_state(self):
filter_size = [3, 3]
output_dim = 10
output_size = [output_dim] * 2
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = False
inputs = tf.zeros([batch_size, output_dim, output_dim, 3], dtype=tf.float32)
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
flatten_state=True)
init_state = cell.init_state(
state_name, batch_size, dtype, learned_state)
output, state_tuple = cell(inputs, init_state)
self.assertAllEqual([4, 10, 10, 15], output.shape.as_list())
self.assertAllEqual([4, 1500], state_tuple[0].shape.as_list())
self.assertAllEqual([4, 1500], state_tuple[1].shape.as_list())
def test_run_lstm_cell_with_output_bottleneck(self):
filter_size = [3, 3]
output_dim = 10
output_size = [output_dim] * 2
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = False
inputs = tf.zeros([batch_size, output_dim, output_dim, 3], dtype=tf.float32)
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
output_bottleneck=True)
init_state = cell.init_state(
state_name, batch_size, dtype, learned_state)
output, state_tuple = cell(inputs, init_state)
self.assertAllEqual([4, 10, 10, 30], output.shape.as_list())
self.assertAllEqual([4, 10, 10, 15], state_tuple[0].shape.as_list())
self.assertAllEqual([4, 10, 10, 15], state_tuple[1].shape.as_list())
def test_get_init_state(self):
filter_size = [3, 3]
output_dim = 10
output_size = [output_dim] * 2
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = False
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units)
init_c, init_h = cell.init_state(
state_name, batch_size, dtype, learned_state)
self.assertEqual(tf.float32, init_c.dtype)
self.assertEqual(tf.float32, init_h.dtype)
with self.test_session() as sess:
init_c_res, init_h_res = sess.run([init_c, init_h])
self.assertAllClose(np.zeros((4, 10, 10, 15)), init_c_res)
self.assertAllClose(np.zeros((4, 10, 10, 15)), init_h_res)
def test_get_init_learned_state(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = True
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units)
init_c, init_h = cell.init_state(
state_name, batch_size, dtype, learned_state)
self.assertEqual(tf.float32, init_c.dtype)
self.assertEqual(tf.float32, init_h.dtype)
self.assertAllEqual([4, 10, 10, 15], init_c.shape.as_list())
self.assertAllEqual([4, 10, 10, 15], init_h.shape.as_list())
def test_unroll(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
unroll = 10
learned_state = False
inputs = tf.zeros([4, 10, 10, 3], dtype=tf.float32)
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units)
state = cell.init_state(
state_name, batch_size, dtype, learned_state)
for step in range(unroll):
output, state = cell(inputs, state)
self.assertAllEqual([4, 10, 10, 15], output.shape.as_list())
self.assertAllEqual([4, 10, 10, 15], state[0].shape.as_list())
self.assertAllEqual([4, 10, 10, 15], state[1].shape.as_list())
def test_prebottleneck(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
unroll = 10
learned_state = False
inputs_large = tf.zeros([4, 10, 10, 5], dtype=tf.float32)
inputs_small = tf.zeros([4, 10, 10, 3], dtype=tf.float32)
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
pre_bottleneck=True)
state = cell.init_state(
state_name, batch_size, dtype, learned_state)
for step in range(unroll):
if step % 2 == 0:
inputs = cell.pre_bottleneck(inputs_large, state[1], 0)
else:
inputs = cell.pre_bottleneck(inputs_small, state[1], 1)
output, state = cell(inputs, state)
self.assertAllEqual([4, 10, 10, 15], output.shape.as_list())
self.assertAllEqual([4, 10, 10, 15], state[0].shape.as_list())
self.assertAllEqual([4, 10, 10, 15], state[1].shape.as_list())
def test_flatten_state(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 15
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
unroll = 10
learned_state = False
inputs_large = tf.zeros([4, 10, 10, 5], dtype=tf.float32)
inputs_small = tf.zeros([4, 10, 10, 3], dtype=tf.float32)
cell = lstm_cells.BottleneckConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
pre_bottleneck=True,
flatten_state=True)
state = cell.init_state(
state_name, batch_size, dtype, learned_state)
for step in range(unroll):
if step % 2 == 0:
inputs = cell.pre_bottleneck(inputs_large, state[1], 0)
else:
inputs = cell.pre_bottleneck(inputs_small, state[1], 1)
output, state = cell(inputs, state)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output_result, state_result = sess.run([output, state])
self.assertAllEqual((4, 10, 10, 15), output_result.shape)
self.assertAllEqual((4, 10*10*15), state_result[0].shape)
self.assertAllEqual((4, 10*10*15), state_result[1].shape)
class GroupedConvLstmCellsTest(tf.test.TestCase):
def test_run_lstm_cell(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 16
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = False
inputs = tf.zeros([4, 10, 10, 3], dtype=tf.float32)
cell = lstm_cells.GroupedConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
is_training=True)
init_state = cell.init_state(
state_name, batch_size, dtype, learned_state)
output, state_tuple = cell(inputs, init_state)
self.assertAllEqual([4, 10, 10, 16], output.shape.as_list())
self.assertAllEqual([4, 10, 10, 16], state_tuple[0].shape.as_list())
self.assertAllEqual([4, 10, 10, 16], state_tuple[1].shape.as_list())
def test_run_lstm_cell_with_output_bottleneck(self):
filter_size = [3, 3]
output_dim = 10
output_size = [output_dim] * 2
num_units = 16
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = False
inputs = tf.zeros([batch_size, output_dim, output_dim, 3], dtype=tf.float32)
cell = lstm_cells.GroupedConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
is_training=True,
output_bottleneck=True)
init_state = cell.init_state(
state_name, batch_size, dtype, learned_state)
output, state_tuple = cell(inputs, init_state)
self.assertAllEqual([4, 10, 10, 32], output.shape.as_list())
self.assertAllEqual([4, 10, 10, 16], state_tuple[0].shape.as_list())
self.assertAllEqual([4, 10, 10, 16], state_tuple[1].shape.as_list())
def test_get_init_state(self):
filter_size = [3, 3]
output_dim = 10
output_size = [output_dim] * 2
num_units = 16
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = False
cell = lstm_cells.GroupedConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
is_training=True)
init_c, init_h = cell.init_state(
state_name, batch_size, dtype, learned_state)
self.assertEqual(tf.float32, init_c.dtype)
self.assertEqual(tf.float32, init_h.dtype)
with self.test_session() as sess:
init_c_res, init_h_res = sess.run([init_c, init_h])
self.assertAllClose(np.zeros((4, 10, 10, 16)), init_c_res)
self.assertAllClose(np.zeros((4, 10, 10, 16)), init_h_res)
def test_get_init_learned_state(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 16
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
learned_state = True
cell = lstm_cells.GroupedConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
is_training=True)
init_c, init_h = cell.init_state(
state_name, batch_size, dtype, learned_state)
self.assertEqual(tf.float32, init_c.dtype)
self.assertEqual(tf.float32, init_h.dtype)
self.assertAllEqual([4, 10, 10, 16], init_c.shape.as_list())
self.assertAllEqual([4, 10, 10, 16], init_h.shape.as_list())
def test_unroll(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 16
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
unroll = 10
learned_state = False
inputs = tf.zeros([4, 10, 10, 3], dtype=tf.float32)
cell = lstm_cells.GroupedConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
is_training=True)
state = cell.init_state(
state_name, batch_size, dtype, learned_state)
for step in range(unroll):
output, state = cell(inputs, state)
self.assertAllEqual([4, 10, 10, 16], output.shape.as_list())
self.assertAllEqual([4, 10, 10, 16], state[0].shape.as_list())
self.assertAllEqual([4, 10, 10, 16], state[1].shape.as_list())
def test_prebottleneck(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 16
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
unroll = 10
learned_state = False
inputs_large = tf.zeros([4, 10, 10, 5], dtype=tf.float32)
inputs_small = tf.zeros([4, 10, 10, 3], dtype=tf.float32)
cell = lstm_cells.GroupedConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
is_training=True,
pre_bottleneck=True)
state = cell.init_state(
state_name, batch_size, dtype, learned_state)
for step in range(unroll):
if step % 2 == 0:
inputs = cell.pre_bottleneck(inputs_large, state[1], 0)
else:
inputs = cell.pre_bottleneck(inputs_small, state[1], 1)
output, state = cell(inputs, state)
self.assertAllEqual([4, 10, 10, 16], output.shape.as_list())
self.assertAllEqual([4, 10, 10, 16], state[0].shape.as_list())
self.assertAllEqual([4, 10, 10, 16], state[1].shape.as_list())
def test_flatten_state(self):
filter_size = [3, 3]
output_size = [10, 10]
num_units = 16
state_name = 'lstm_state'
batch_size = 4
dtype = tf.float32
unroll = 10
learned_state = False
inputs_large = tf.zeros([4, 10, 10, 5], dtype=tf.float32)
inputs_small = tf.zeros([4, 10, 10, 3], dtype=tf.float32)
cell = lstm_cells.GroupedConvLSTMCell(
filter_size=filter_size,
output_size=output_size,
num_units=num_units,
is_training=True,
pre_bottleneck=True,
flatten_state=True)
state = cell.init_state(
state_name, batch_size, dtype, learned_state)
for step in range(unroll):
if step % 2 == 0:
inputs = cell.pre_bottleneck(inputs_large, state[1], 0)
else:
inputs = cell.pre_bottleneck(inputs_small, state[1], 1)
output, state = cell(inputs, state)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output_result, state_result = sess.run([output, state])
self.assertAllEqual((4, 10, 10, 16), output_result.shape)
self.assertAllEqual((4, 10*10*16), state_result[0].shape)
self.assertAllEqual((4, 10*10*16), state_result[1].shape)
if __name__ == '__main__':
tf.test.main()