Spaces:
Running
Running
# Copyright 2016 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Contains different architectures for the different DSN parts. | |
We define here the modules that can be used in the different parts of the DSN | |
model. | |
- shared encoder (dsn_cropped_linemod, dann_xxxx) | |
- private encoder (default_encoder) | |
- decoder (large_decoder, gtsrb_decoder, small_decoder) | |
""" | |
import tensorflow as tf | |
#from models.domain_adaptation.domain_separation | |
import utils | |
slim = tf.contrib.slim | |
def default_batch_norm_params(is_training=False): | |
"""Returns default batch normalization parameters for DSNs. | |
Args: | |
is_training: whether or not the model is training. | |
Returns: | |
a dictionary that maps batch norm parameter names (strings) to values. | |
""" | |
return { | |
# Decay for the moving averages. | |
'decay': 0.5, | |
# epsilon to prevent 0s in variance. | |
'epsilon': 0.001, | |
'is_training': is_training | |
} | |
################################################################################ | |
# PRIVATE ENCODERS | |
################################################################################ | |
def default_encoder(images, code_size, batch_norm_params=None, | |
weight_decay=0.0): | |
"""Encodes the given images to codes of the given size. | |
Args: | |
images: a tensor of size [batch_size, height, width, 1]. | |
code_size: the number of hidden units in the code layer of the classifier. | |
batch_norm_params: a dictionary that maps batch norm parameter names to | |
values. | |
weight_decay: the value for the weight decay coefficient. | |
Returns: | |
end_points: the code of the input. | |
""" | |
end_points = {} | |
with slim.arg_scope( | |
[slim.conv2d, slim.fully_connected], | |
weights_regularizer=slim.l2_regularizer(weight_decay), | |
activation_fn=tf.nn.relu, | |
normalizer_fn=slim.batch_norm, | |
normalizer_params=batch_norm_params): | |
with slim.arg_scope([slim.conv2d], kernel_size=[5, 5], padding='SAME'): | |
net = slim.conv2d(images, 32, scope='conv1') | |
net = slim.max_pool2d(net, [2, 2], 2, scope='pool1') | |
net = slim.conv2d(net, 64, scope='conv2') | |
net = slim.max_pool2d(net, [2, 2], 2, scope='pool2') | |
net = slim.flatten(net) | |
end_points['flatten'] = net | |
net = slim.fully_connected(net, code_size, scope='fc1') | |
end_points['fc3'] = net | |
return end_points | |
################################################################################ | |
# DECODERS | |
################################################################################ | |
def large_decoder(codes, | |
height, | |
width, | |
channels, | |
batch_norm_params=None, | |
weight_decay=0.0): | |
"""Decodes the codes to a fixed output size. | |
Args: | |
codes: a tensor of size [batch_size, code_size]. | |
height: the height of the output images. | |
width: the width of the output images. | |
channels: the number of the output channels. | |
batch_norm_params: a dictionary that maps batch norm parameter names to | |
values. | |
weight_decay: the value for the weight decay coefficient. | |
Returns: | |
recons: the reconstruction tensor of shape [batch_size, height, width, 3]. | |
""" | |
with slim.arg_scope( | |
[slim.conv2d, slim.fully_connected], | |
weights_regularizer=slim.l2_regularizer(weight_decay), | |
activation_fn=tf.nn.relu, | |
normalizer_fn=slim.batch_norm, | |
normalizer_params=batch_norm_params): | |
net = slim.fully_connected(codes, 600, scope='fc1') | |
batch_size = net.get_shape().as_list()[0] | |
net = tf.reshape(net, [batch_size, 10, 10, 6]) | |
net = slim.conv2d(net, 32, [5, 5], scope='conv1_1') | |
net = tf.image.resize_nearest_neighbor(net, (16, 16)) | |
net = slim.conv2d(net, 32, [5, 5], scope='conv2_1') | |
net = tf.image.resize_nearest_neighbor(net, (32, 32)) | |
net = slim.conv2d(net, 32, [5, 5], scope='conv3_2') | |
output_size = [height, width] | |
net = tf.image.resize_nearest_neighbor(net, output_size) | |
with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]): | |
net = slim.conv2d(net, channels, activation_fn=None, scope='conv4_1') | |
return net | |
def gtsrb_decoder(codes, | |
height, | |
width, | |
channels, | |
batch_norm_params=None, | |
weight_decay=0.0): | |
"""Decodes the codes to a fixed output size. This decoder is specific to GTSRB | |
Args: | |
codes: a tensor of size [batch_size, 100]. | |
height: the height of the output images. | |
width: the width of the output images. | |
channels: the number of the output channels. | |
batch_norm_params: a dictionary that maps batch norm parameter names to | |
values. | |
weight_decay: the value for the weight decay coefficient. | |
Returns: | |
recons: the reconstruction tensor of shape [batch_size, height, width, 3]. | |
Raises: | |
ValueError: When the input code size is not 100. | |
""" | |
batch_size, code_size = codes.get_shape().as_list() | |
if code_size != 100: | |
raise ValueError('The code size used as an input to the GTSRB decoder is ' | |
'expected to be 100.') | |
with slim.arg_scope( | |
[slim.conv2d, slim.fully_connected], | |
weights_regularizer=slim.l2_regularizer(weight_decay), | |
activation_fn=tf.nn.relu, | |
normalizer_fn=slim.batch_norm, | |
normalizer_params=batch_norm_params): | |
net = codes | |
net = tf.reshape(net, [batch_size, 10, 10, 1]) | |
net = slim.conv2d(net, 32, [3, 3], scope='conv1_1') | |
# First upsampling 20x20 | |
net = tf.image.resize_nearest_neighbor(net, [20, 20]) | |
net = slim.conv2d(net, 32, [3, 3], scope='conv2_1') | |
output_size = [height, width] | |
# Final upsampling 40 x 40 | |
net = tf.image.resize_nearest_neighbor(net, output_size) | |
with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]): | |
net = slim.conv2d(net, 16, scope='conv3_1') | |
net = slim.conv2d(net, channels, activation_fn=None, scope='conv3_2') | |
return net | |
def small_decoder(codes, | |
height, | |
width, | |
channels, | |
batch_norm_params=None, | |
weight_decay=0.0): | |
"""Decodes the codes to a fixed output size. | |
Args: | |
codes: a tensor of size [batch_size, code_size]. | |
height: the height of the output images. | |
width: the width of the output images. | |
channels: the number of the output channels. | |
batch_norm_params: a dictionary that maps batch norm parameter names to | |
values. | |
weight_decay: the value for the weight decay coefficient. | |
Returns: | |
recons: the reconstruction tensor of shape [batch_size, height, width, 3]. | |
""" | |
with slim.arg_scope( | |
[slim.conv2d, slim.fully_connected], | |
weights_regularizer=slim.l2_regularizer(weight_decay), | |
activation_fn=tf.nn.relu, | |
normalizer_fn=slim.batch_norm, | |
normalizer_params=batch_norm_params): | |
net = slim.fully_connected(codes, 300, scope='fc1') | |
batch_size = net.get_shape().as_list()[0] | |
net = tf.reshape(net, [batch_size, 10, 10, 3]) | |
net = slim.conv2d(net, 16, [3, 3], scope='conv1_1') | |
net = slim.conv2d(net, 16, [3, 3], scope='conv1_2') | |
output_size = [height, width] | |
net = tf.image.resize_nearest_neighbor(net, output_size) | |
with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]): | |
net = slim.conv2d(net, 16, scope='conv2_1') | |
net = slim.conv2d(net, channels, activation_fn=None, scope='conv2_2') | |
return net | |
################################################################################ | |
# SHARED ENCODERS | |
################################################################################ | |
def dann_mnist(images, | |
weight_decay=0.0, | |
prefix='model', | |
num_classes=10, | |
**kwargs): | |
"""Creates a convolution MNIST model. | |
Note that this model implements the architecture for MNIST proposed in: | |
Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN), | |
JMLR 2015 | |
Args: | |
images: the MNIST digits, a tensor of size [batch_size, 28, 28, 1]. | |
weight_decay: the value for the weight decay coefficient. | |
prefix: name of the model to use when prefixing tags. | |
num_classes: the number of output classes to use. | |
**kwargs: Placeholder for keyword arguments used by other shared encoders. | |
Returns: | |
the output logits, a tensor of size [batch_size, num_classes]. | |
a dictionary with key/values the layer names and tensors. | |
""" | |
end_points = {} | |
with slim.arg_scope( | |
[slim.conv2d, slim.fully_connected], | |
weights_regularizer=slim.l2_regularizer(weight_decay), | |
activation_fn=tf.nn.relu,): | |
with slim.arg_scope([slim.conv2d], padding='SAME'): | |
end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1') | |
end_points['pool1'] = slim.max_pool2d( | |
end_points['conv1'], [2, 2], 2, scope='pool1') | |
end_points['conv2'] = slim.conv2d( | |
end_points['pool1'], 48, [5, 5], scope='conv2') | |
end_points['pool2'] = slim.max_pool2d( | |
end_points['conv2'], [2, 2], 2, scope='pool2') | |
end_points['fc3'] = slim.fully_connected( | |
slim.flatten(end_points['pool2']), 100, scope='fc3') | |
end_points['fc4'] = slim.fully_connected( | |
slim.flatten(end_points['fc3']), 100, scope='fc4') | |
logits = slim.fully_connected( | |
end_points['fc4'], num_classes, activation_fn=None, scope='fc5') | |
return logits, end_points | |
def dann_svhn(images, | |
weight_decay=0.0, | |
prefix='model', | |
num_classes=10, | |
**kwargs): | |
"""Creates the convolutional SVHN model. | |
Note that this model implements the architecture for MNIST proposed in: | |
Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN), | |
JMLR 2015 | |
Args: | |
images: the SVHN digits, a tensor of size [batch_size, 32, 32, 3]. | |
weight_decay: the value for the weight decay coefficient. | |
prefix: name of the model to use when prefixing tags. | |
num_classes: the number of output classes to use. | |
**kwargs: Placeholder for keyword arguments used by other shared encoders. | |
Returns: | |
the output logits, a tensor of size [batch_size, num_classes]. | |
a dictionary with key/values the layer names and tensors. | |
""" | |
end_points = {} | |
with slim.arg_scope( | |
[slim.conv2d, slim.fully_connected], | |
weights_regularizer=slim.l2_regularizer(weight_decay), | |
activation_fn=tf.nn.relu,): | |
with slim.arg_scope([slim.conv2d], padding='SAME'): | |
end_points['conv1'] = slim.conv2d(images, 64, [5, 5], scope='conv1') | |
end_points['pool1'] = slim.max_pool2d( | |
end_points['conv1'], [3, 3], 2, scope='pool1') | |
end_points['conv2'] = slim.conv2d( | |
end_points['pool1'], 64, [5, 5], scope='conv2') | |
end_points['pool2'] = slim.max_pool2d( | |
end_points['conv2'], [3, 3], 2, scope='pool2') | |
end_points['conv3'] = slim.conv2d( | |
end_points['pool2'], 128, [5, 5], scope='conv3') | |
end_points['fc3'] = slim.fully_connected( | |
slim.flatten(end_points['conv3']), 3072, scope='fc3') | |
end_points['fc4'] = slim.fully_connected( | |
slim.flatten(end_points['fc3']), 2048, scope='fc4') | |
logits = slim.fully_connected( | |
end_points['fc4'], num_classes, activation_fn=None, scope='fc5') | |
return logits, end_points | |
def dann_gtsrb(images, | |
weight_decay=0.0, | |
prefix='model', | |
num_classes=43, | |
**kwargs): | |
"""Creates the convolutional GTSRB model. | |
Note that this model implements the architecture for MNIST proposed in: | |
Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN), | |
JMLR 2015 | |
Args: | |
images: the GTSRB images, a tensor of size [batch_size, 40, 40, 3]. | |
weight_decay: the value for the weight decay coefficient. | |
prefix: name of the model to use when prefixing tags. | |
num_classes: the number of output classes to use. | |
**kwargs: Placeholder for keyword arguments used by other shared encoders. | |
Returns: | |
the output logits, a tensor of size [batch_size, num_classes]. | |
a dictionary with key/values the layer names and tensors. | |
""" | |
end_points = {} | |
with slim.arg_scope( | |
[slim.conv2d, slim.fully_connected], | |
weights_regularizer=slim.l2_regularizer(weight_decay), | |
activation_fn=tf.nn.relu,): | |
with slim.arg_scope([slim.conv2d], padding='SAME'): | |
end_points['conv1'] = slim.conv2d(images, 96, [5, 5], scope='conv1') | |
end_points['pool1'] = slim.max_pool2d( | |
end_points['conv1'], [2, 2], 2, scope='pool1') | |
end_points['conv2'] = slim.conv2d( | |
end_points['pool1'], 144, [3, 3], scope='conv2') | |
end_points['pool2'] = slim.max_pool2d( | |
end_points['conv2'], [2, 2], 2, scope='pool2') | |
end_points['conv3'] = slim.conv2d( | |
end_points['pool2'], 256, [5, 5], scope='conv3') | |
end_points['pool3'] = slim.max_pool2d( | |
end_points['conv3'], [2, 2], 2, scope='pool3') | |
end_points['fc3'] = slim.fully_connected( | |
slim.flatten(end_points['pool3']), 512, scope='fc3') | |
logits = slim.fully_connected( | |
end_points['fc3'], num_classes, activation_fn=None, scope='fc4') | |
return logits, end_points | |
def dsn_cropped_linemod(images, | |
weight_decay=0.0, | |
prefix='model', | |
num_classes=11, | |
batch_norm_params=None, | |
is_training=False): | |
"""Creates the convolutional pose estimation model for Cropped Linemod. | |
Args: | |
images: the Cropped Linemod samples, a tensor of size | |
[batch_size, 64, 64, 4]. | |
weight_decay: the value for the weight decay coefficient. | |
prefix: name of the model to use when prefixing tags. | |
num_classes: the number of output classes to use. | |
batch_norm_params: a dictionary that maps batch norm parameter names to | |
values. | |
is_training: specifies whether or not we're currently training the model. | |
This variable will determine the behaviour of the dropout layer. | |
Returns: | |
the output logits, a tensor of size [batch_size, num_classes]. | |
a dictionary with key/values the layer names and tensors. | |
""" | |
end_points = {} | |
tf.summary.image('{}/input_images'.format(prefix), images) | |
with slim.arg_scope( | |
[slim.conv2d, slim.fully_connected], | |
weights_regularizer=slim.l2_regularizer(weight_decay), | |
activation_fn=tf.nn.relu, | |
normalizer_fn=slim.batch_norm if batch_norm_params else None, | |
normalizer_params=batch_norm_params): | |
with slim.arg_scope([slim.conv2d], padding='SAME'): | |
end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1') | |
end_points['pool1'] = slim.max_pool2d( | |
end_points['conv1'], [2, 2], 2, scope='pool1') | |
end_points['conv2'] = slim.conv2d( | |
end_points['pool1'], 64, [5, 5], scope='conv2') | |
end_points['pool2'] = slim.max_pool2d( | |
end_points['conv2'], [2, 2], 2, scope='pool2') | |
net = slim.flatten(end_points['pool2']) | |
end_points['fc3'] = slim.fully_connected(net, 128, scope='fc3') | |
net = slim.dropout( | |
end_points['fc3'], 0.5, is_training=is_training, scope='dropout') | |
with tf.variable_scope('quaternion_prediction'): | |
predicted_quaternion = slim.fully_connected( | |
net, 4, activation_fn=tf.nn.tanh) | |
predicted_quaternion = tf.nn.l2_normalize(predicted_quaternion, 1) | |
logits = slim.fully_connected( | |
net, num_classes, activation_fn=None, scope='fc4') | |
end_points['quaternion_pred'] = predicted_quaternion | |
return logits, end_points | |