Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for xception.py.""" | |
import numpy as np | |
import six | |
import tensorflow as tf | |
from tensorflow.contrib import slim as contrib_slim | |
from deeplab.core import xception | |
from tensorflow.contrib.slim.nets import resnet_utils | |
slim = contrib_slim | |
def create_test_input(batch, height, width, channels): | |
"""Create test input tensor.""" | |
if None in [batch, height, width, channels]: | |
return tf.placeholder(tf.float32, (batch, height, width, channels)) | |
else: | |
return tf.cast( | |
np.tile( | |
np.reshape( | |
np.reshape(np.arange(height), [height, 1]) + | |
np.reshape(np.arange(width), [1, width]), | |
[1, height, width, 1]), | |
[batch, 1, 1, channels]), | |
tf.float32) | |
class UtilityFunctionTest(tf.test.TestCase): | |
def testSeparableConv2DSameWithInputEvenSize(self): | |
n, n2 = 4, 2 | |
# Input image. | |
x = create_test_input(1, n, n, 1) | |
# Convolution kernel. | |
dw = create_test_input(1, 3, 3, 1) | |
dw = tf.reshape(dw, [3, 3, 1, 1]) | |
tf.get_variable('Conv/depthwise_weights', initializer=dw) | |
tf.get_variable('Conv/pointwise_weights', | |
initializer=tf.ones([1, 1, 1, 1])) | |
tf.get_variable('Conv/biases', initializer=tf.zeros([1])) | |
tf.get_variable_scope().reuse_variables() | |
y1 = slim.separable_conv2d(x, 1, [3, 3], depth_multiplier=1, | |
stride=1, scope='Conv') | |
y1_expected = tf.cast([[14, 28, 43, 26], | |
[28, 48, 66, 37], | |
[43, 66, 84, 46], | |
[26, 37, 46, 22]], tf.float32) | |
y1_expected = tf.reshape(y1_expected, [1, n, n, 1]) | |
y2 = resnet_utils.subsample(y1, 2) | |
y2_expected = tf.cast([[14, 43], | |
[43, 84]], tf.float32) | |
y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1]) | |
y3 = xception.separable_conv2d_same(x, 1, 3, depth_multiplier=1, | |
regularize_depthwise=True, | |
stride=2, scope='Conv') | |
y3_expected = y2_expected | |
y4 = slim.separable_conv2d(x, 1, [3, 3], depth_multiplier=1, | |
stride=2, scope='Conv') | |
y4_expected = tf.cast([[48, 37], | |
[37, 22]], tf.float32) | |
y4_expected = tf.reshape(y4_expected, [1, n2, n2, 1]) | |
with self.test_session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
self.assertAllClose(y1.eval(), y1_expected.eval()) | |
self.assertAllClose(y2.eval(), y2_expected.eval()) | |
self.assertAllClose(y3.eval(), y3_expected.eval()) | |
self.assertAllClose(y4.eval(), y4_expected.eval()) | |
def testSeparableConv2DSameWithInputOddSize(self): | |
n, n2 = 5, 3 | |
# Input image. | |
x = create_test_input(1, n, n, 1) | |
# Convolution kernel. | |
dw = create_test_input(1, 3, 3, 1) | |
dw = tf.reshape(dw, [3, 3, 1, 1]) | |
tf.get_variable('Conv/depthwise_weights', initializer=dw) | |
tf.get_variable('Conv/pointwise_weights', | |
initializer=tf.ones([1, 1, 1, 1])) | |
tf.get_variable('Conv/biases', initializer=tf.zeros([1])) | |
tf.get_variable_scope().reuse_variables() | |
y1 = slim.separable_conv2d(x, 1, [3, 3], depth_multiplier=1, | |
stride=1, scope='Conv') | |
y1_expected = tf.cast([[14, 28, 43, 58, 34], | |
[28, 48, 66, 84, 46], | |
[43, 66, 84, 102, 55], | |
[58, 84, 102, 120, 64], | |
[34, 46, 55, 64, 30]], tf.float32) | |
y1_expected = tf.reshape(y1_expected, [1, n, n, 1]) | |
y2 = resnet_utils.subsample(y1, 2) | |
y2_expected = tf.cast([[14, 43, 34], | |
[43, 84, 55], | |
[34, 55, 30]], tf.float32) | |
y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1]) | |
y3 = xception.separable_conv2d_same(x, 1, 3, depth_multiplier=1, | |
regularize_depthwise=True, | |
stride=2, scope='Conv') | |
y3_expected = y2_expected | |
y4 = slim.separable_conv2d(x, 1, [3, 3], depth_multiplier=1, | |
stride=2, scope='Conv') | |
y4_expected = y2_expected | |
with self.test_session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
self.assertAllClose(y1.eval(), y1_expected.eval()) | |
self.assertAllClose(y2.eval(), y2_expected.eval()) | |
self.assertAllClose(y3.eval(), y3_expected.eval()) | |
self.assertAllClose(y4.eval(), y4_expected.eval()) | |
class XceptionNetworkTest(tf.test.TestCase): | |
"""Tests with small Xception network.""" | |
def _xception_small(self, | |
inputs, | |
num_classes=None, | |
is_training=True, | |
global_pool=True, | |
output_stride=None, | |
regularize_depthwise=True, | |
reuse=None, | |
scope='xception_small'): | |
"""A shallow and thin Xception for faster tests.""" | |
block = xception.xception_block | |
blocks = [ | |
block('entry_flow/block1', | |
depth_list=[1, 1, 1], | |
skip_connection_type='conv', | |
activation_fn_in_separable_conv=False, | |
regularize_depthwise=regularize_depthwise, | |
num_units=1, | |
stride=2), | |
block('entry_flow/block2', | |
depth_list=[2, 2, 2], | |
skip_connection_type='conv', | |
activation_fn_in_separable_conv=False, | |
regularize_depthwise=regularize_depthwise, | |
num_units=1, | |
stride=2), | |
block('entry_flow/block3', | |
depth_list=[4, 4, 4], | |
skip_connection_type='conv', | |
activation_fn_in_separable_conv=False, | |
regularize_depthwise=regularize_depthwise, | |
num_units=1, | |
stride=1), | |
block('entry_flow/block4', | |
depth_list=[4, 4, 4], | |
skip_connection_type='conv', | |
activation_fn_in_separable_conv=False, | |
regularize_depthwise=regularize_depthwise, | |
num_units=1, | |
stride=2), | |
block('middle_flow/block1', | |
depth_list=[4, 4, 4], | |
skip_connection_type='sum', | |
activation_fn_in_separable_conv=False, | |
regularize_depthwise=regularize_depthwise, | |
num_units=2, | |
stride=1), | |
block('exit_flow/block1', | |
depth_list=[8, 8, 8], | |
skip_connection_type='conv', | |
activation_fn_in_separable_conv=False, | |
regularize_depthwise=regularize_depthwise, | |
num_units=1, | |
stride=2), | |
block('exit_flow/block2', | |
depth_list=[16, 16, 16], | |
skip_connection_type='none', | |
activation_fn_in_separable_conv=True, | |
regularize_depthwise=regularize_depthwise, | |
num_units=1, | |
stride=1), | |
] | |
return xception.xception(inputs, | |
blocks=blocks, | |
num_classes=num_classes, | |
is_training=is_training, | |
global_pool=global_pool, | |
output_stride=output_stride, | |
reuse=reuse, | |
scope=scope) | |
def testClassificationEndPoints(self): | |
global_pool = True | |
num_classes = 3 | |
inputs = create_test_input(2, 32, 32, 3) | |
with slim.arg_scope(xception.xception_arg_scope()): | |
logits, end_points = self._xception_small( | |
inputs, | |
num_classes=num_classes, | |
global_pool=global_pool, | |
scope='xception') | |
self.assertTrue( | |
logits.op.name.startswith('xception/logits')) | |
self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) | |
self.assertTrue('predictions' in end_points) | |
self.assertListEqual(end_points['predictions'].get_shape().as_list(), | |
[2, 1, 1, num_classes]) | |
self.assertTrue('global_pool' in end_points) | |
self.assertListEqual(end_points['global_pool'].get_shape().as_list(), | |
[2, 1, 1, 16]) | |
def testEndpointNames(self): | |
global_pool = True | |
num_classes = 3 | |
inputs = create_test_input(2, 32, 32, 3) | |
with slim.arg_scope(xception.xception_arg_scope()): | |
_, end_points = self._xception_small( | |
inputs, | |
num_classes=num_classes, | |
global_pool=global_pool, | |
scope='xception') | |
expected = [ | |
'xception/entry_flow/conv1_1', | |
'xception/entry_flow/conv1_2', | |
'xception/entry_flow/block1/unit_1/xception_module/separable_conv1', | |
'xception/entry_flow/block1/unit_1/xception_module/separable_conv2', | |
'xception/entry_flow/block1/unit_1/xception_module/separable_conv3', | |
'xception/entry_flow/block1/unit_1/xception_module/shortcut', | |
'xception/entry_flow/block1/unit_1/xception_module', | |
'xception/entry_flow/block1', | |
'xception/entry_flow/block2/unit_1/xception_module/separable_conv1', | |
'xception/entry_flow/block2/unit_1/xception_module/separable_conv2', | |
'xception/entry_flow/block2/unit_1/xception_module/separable_conv3', | |
'xception/entry_flow/block2/unit_1/xception_module/shortcut', | |
'xception/entry_flow/block2/unit_1/xception_module', | |
'xception/entry_flow/block2', | |
'xception/entry_flow/block3/unit_1/xception_module/separable_conv1', | |
'xception/entry_flow/block3/unit_1/xception_module/separable_conv2', | |
'xception/entry_flow/block3/unit_1/xception_module/separable_conv3', | |
'xception/entry_flow/block3/unit_1/xception_module/shortcut', | |
'xception/entry_flow/block3/unit_1/xception_module', | |
'xception/entry_flow/block3', | |
'xception/entry_flow/block4/unit_1/xception_module/separable_conv1', | |
'xception/entry_flow/block4/unit_1/xception_module/separable_conv2', | |
'xception/entry_flow/block4/unit_1/xception_module/separable_conv3', | |
'xception/entry_flow/block4/unit_1/xception_module/shortcut', | |
'xception/entry_flow/block4/unit_1/xception_module', | |
'xception/entry_flow/block4', | |
'xception/middle_flow/block1/unit_1/xception_module/separable_conv1', | |
'xception/middle_flow/block1/unit_1/xception_module/separable_conv2', | |
'xception/middle_flow/block1/unit_1/xception_module/separable_conv3', | |
'xception/middle_flow/block1/unit_1/xception_module', | |
'xception/middle_flow/block1/unit_2/xception_module/separable_conv1', | |
'xception/middle_flow/block1/unit_2/xception_module/separable_conv2', | |
'xception/middle_flow/block1/unit_2/xception_module/separable_conv3', | |
'xception/middle_flow/block1/unit_2/xception_module', | |
'xception/middle_flow/block1', | |
'xception/exit_flow/block1/unit_1/xception_module/separable_conv1', | |
'xception/exit_flow/block1/unit_1/xception_module/separable_conv2', | |
'xception/exit_flow/block1/unit_1/xception_module/separable_conv3', | |
'xception/exit_flow/block1/unit_1/xception_module/shortcut', | |
'xception/exit_flow/block1/unit_1/xception_module', | |
'xception/exit_flow/block1', | |
'xception/exit_flow/block2/unit_1/xception_module/separable_conv1', | |
'xception/exit_flow/block2/unit_1/xception_module/separable_conv2', | |
'xception/exit_flow/block2/unit_1/xception_module/separable_conv3', | |
'xception/exit_flow/block2/unit_1/xception_module', | |
'xception/exit_flow/block2', | |
'global_pool', | |
'xception/logits', | |
'predictions', | |
] | |
self.assertItemsEqual(list(end_points.keys()), expected) | |
def testClassificationShapes(self): | |
global_pool = True | |
num_classes = 3 | |
inputs = create_test_input(2, 64, 64, 3) | |
with slim.arg_scope(xception.xception_arg_scope()): | |
_, end_points = self._xception_small( | |
inputs, | |
num_classes, | |
global_pool=global_pool, | |
scope='xception') | |
endpoint_to_shape = { | |
'xception/entry_flow/conv1_1': [2, 32, 32, 32], | |
'xception/entry_flow/block1': [2, 16, 16, 1], | |
'xception/entry_flow/block2': [2, 8, 8, 2], | |
'xception/entry_flow/block4': [2, 4, 4, 4], | |
'xception/middle_flow/block1': [2, 4, 4, 4], | |
'xception/exit_flow/block1': [2, 2, 2, 8], | |
'xception/exit_flow/block2': [2, 2, 2, 16]} | |
for endpoint, shape in six.iteritems(endpoint_to_shape): | |
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) | |
def testFullyConvolutionalEndpointShapes(self): | |
global_pool = False | |
num_classes = 3 | |
inputs = create_test_input(2, 65, 65, 3) | |
with slim.arg_scope(xception.xception_arg_scope()): | |
_, end_points = self._xception_small( | |
inputs, | |
num_classes, | |
global_pool=global_pool, | |
scope='xception') | |
endpoint_to_shape = { | |
'xception/entry_flow/conv1_1': [2, 33, 33, 32], | |
'xception/entry_flow/block1': [2, 17, 17, 1], | |
'xception/entry_flow/block2': [2, 9, 9, 2], | |
'xception/entry_flow/block4': [2, 5, 5, 4], | |
'xception/middle_flow/block1': [2, 5, 5, 4], | |
'xception/exit_flow/block1': [2, 3, 3, 8], | |
'xception/exit_flow/block2': [2, 3, 3, 16]} | |
for endpoint, shape in six.iteritems(endpoint_to_shape): | |
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) | |
def testAtrousFullyConvolutionalEndpointShapes(self): | |
global_pool = False | |
num_classes = 3 | |
output_stride = 8 | |
inputs = create_test_input(2, 65, 65, 3) | |
with slim.arg_scope(xception.xception_arg_scope()): | |
_, end_points = self._xception_small( | |
inputs, | |
num_classes, | |
global_pool=global_pool, | |
output_stride=output_stride, | |
scope='xception') | |
endpoint_to_shape = { | |
'xception/entry_flow/block1': [2, 17, 17, 1], | |
'xception/entry_flow/block2': [2, 9, 9, 2], | |
'xception/entry_flow/block4': [2, 9, 9, 4], | |
'xception/middle_flow/block1': [2, 9, 9, 4], | |
'xception/exit_flow/block1': [2, 9, 9, 8], | |
'xception/exit_flow/block2': [2, 9, 9, 16]} | |
for endpoint, shape in six.iteritems(endpoint_to_shape): | |
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) | |
def testAtrousFullyConvolutionalValues(self): | |
"""Verify dense feature extraction with atrous convolution.""" | |
nominal_stride = 32 | |
for output_stride in [4, 8, 16, 32, None]: | |
with slim.arg_scope(xception.xception_arg_scope()): | |
with tf.Graph().as_default(): | |
with self.test_session() as sess: | |
tf.set_random_seed(0) | |
inputs = create_test_input(2, 96, 97, 3) | |
# Dense feature extraction followed by subsampling. | |
output, _ = self._xception_small( | |
inputs, | |
None, | |
is_training=False, | |
global_pool=False, | |
output_stride=output_stride) | |
if output_stride is None: | |
factor = 1 | |
else: | |
factor = nominal_stride // output_stride | |
output = resnet_utils.subsample(output, factor) | |
# Make the two networks use the same weights. | |
tf.get_variable_scope().reuse_variables() | |
# Feature extraction at the nominal network rate. | |
expected, _ = self._xception_small( | |
inputs, | |
None, | |
is_training=False, | |
global_pool=False) | |
sess.run(tf.global_variables_initializer()) | |
self.assertAllClose(output.eval(), expected.eval(), | |
atol=1e-5, rtol=1e-5) | |
def testUnknownBatchSize(self): | |
batch = 2 | |
height, width = 65, 65 | |
global_pool = True | |
num_classes = 10 | |
inputs = create_test_input(None, height, width, 3) | |
with slim.arg_scope(xception.xception_arg_scope()): | |
logits, _ = self._xception_small( | |
inputs, | |
num_classes, | |
global_pool=global_pool, | |
scope='xception') | |
self.assertTrue(logits.op.name.startswith('xception/logits')) | |
self.assertListEqual(logits.get_shape().as_list(), | |
[None, 1, 1, num_classes]) | |
images = create_test_input(batch, height, width, 3) | |
with self.test_session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
output = sess.run(logits, {inputs: images.eval()}) | |
self.assertEquals(output.shape, (batch, 1, 1, num_classes)) | |
def testFullyConvolutionalUnknownHeightWidth(self): | |
batch = 2 | |
height, width = 65, 65 | |
global_pool = False | |
inputs = create_test_input(batch, None, None, 3) | |
with slim.arg_scope(xception.xception_arg_scope()): | |
output, _ = self._xception_small( | |
inputs, | |
None, | |
global_pool=global_pool) | |
self.assertListEqual(output.get_shape().as_list(), | |
[batch, None, None, 16]) | |
images = create_test_input(batch, height, width, 3) | |
with self.test_session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
output = sess.run(output, {inputs: images.eval()}) | |
self.assertEquals(output.shape, (batch, 3, 3, 16)) | |
def testAtrousFullyConvolutionalUnknownHeightWidth(self): | |
batch = 2 | |
height, width = 65, 65 | |
global_pool = False | |
output_stride = 8 | |
inputs = create_test_input(batch, None, None, 3) | |
with slim.arg_scope(xception.xception_arg_scope()): | |
output, _ = self._xception_small( | |
inputs, | |
None, | |
global_pool=global_pool, | |
output_stride=output_stride) | |
self.assertListEqual(output.get_shape().as_list(), | |
[batch, None, None, 16]) | |
images = create_test_input(batch, height, width, 3) | |
with self.test_session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
output = sess.run(output, {inputs: images.eval()}) | |
self.assertEquals(output.shape, (batch, 9, 9, 16)) | |
def testEndpointsReuse(self): | |
inputs = create_test_input(2, 32, 32, 3) | |
with slim.arg_scope(xception.xception_arg_scope()): | |
_, end_points0 = xception.xception_65( | |
inputs, | |
num_classes=10, | |
reuse=False) | |
with slim.arg_scope(xception.xception_arg_scope()): | |
_, end_points1 = xception.xception_65( | |
inputs, | |
num_classes=10, | |
reuse=True) | |
self.assertItemsEqual(list(end_points0.keys()), list(end_points1.keys())) | |
def testUseBoundedAcitvation(self): | |
global_pool = False | |
num_classes = 3 | |
output_stride = 16 | |
for use_bounded_activation in (True, False): | |
tf.reset_default_graph() | |
inputs = create_test_input(2, 65, 65, 3) | |
with slim.arg_scope(xception.xception_arg_scope( | |
use_bounded_activation=use_bounded_activation)): | |
_, _ = self._xception_small( | |
inputs, | |
num_classes, | |
global_pool=global_pool, | |
output_stride=output_stride, | |
scope='xception') | |
for node in tf.get_default_graph().as_graph_def().node: | |
if node.op.startswith('Relu'): | |
self.assertEqual(node.op == 'Relu6', use_bounded_activation) | |
if __name__ == '__main__': | |
tf.test.main() | |