Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Generate a synthetic dataset.""" | |
import os | |
import numpy as np | |
from six.moves import xrange | |
import tensorflow as tf | |
import synthetic_model | |
FLAGS = tf.app.flags.FLAGS | |
tf.app.flags.DEFINE_string( | |
'dataset_dir', None, | |
"""Directory where to write the dataset and the configs.""") | |
tf.app.flags.DEFINE_integer( | |
'count', 1000, | |
"""Number of samples to generate.""") | |
def int64_feature(values): | |
"""Returns a TF-Feature of int64s. | |
Args: | |
values: A scalar or list of values. | |
Returns: | |
A TF-Feature. | |
""" | |
if not isinstance(values, (tuple, list)): | |
values = [values] | |
return tf.train.Feature(int64_list=tf.train.Int64List(value=values)) | |
def float_feature(values): | |
"""Returns a TF-Feature of floats. | |
Args: | |
values: A scalar of list of values. | |
Returns: | |
A TF-Feature. | |
""" | |
if not isinstance(values, (tuple, list)): | |
values = [values] | |
return tf.train.Feature(float_list=tf.train.FloatList(value=values)) | |
def AddToTFRecord(code, tfrecord_writer): | |
example = tf.train.Example(features=tf.train.Features(feature={ | |
'code_shape': int64_feature(code.shape), | |
'code': float_feature(code.flatten().tolist()), | |
})) | |
tfrecord_writer.write(example.SerializeToString()) | |
def GenerateDataset(filename, count, code_shape): | |
with tf.python_io.TFRecordWriter(filename) as tfrecord_writer: | |
for _ in xrange(count): | |
code = synthetic_model.GenerateSingleCode(code_shape) | |
# Convert {0,1} codes to {-1,+1} codes. | |
code = 2.0 * code - 1.0 | |
AddToTFRecord(code, tfrecord_writer) | |
def main(argv=None): # pylint: disable=unused-argument | |
GenerateDataset(os.path.join(FLAGS.dataset_dir + '/synthetic_dataset'), | |
FLAGS.count, | |
[35, 48, 8]) | |
if __name__ == '__main__': | |
tf.app.run() | |