NCTCMumbai's picture
Upload 2571 files
0b8359d
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Imagenet input."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import flags
import tensorflow as tf
FLAGS = flags.FLAGS
flags.DEFINE_string('imagenet_data_dir', None,
'Directory with Imagenet dataset in TFRecord format.')
def _decode_and_random_crop(image_buffer, bbox, image_size):
"""Randomly crops image and then scales to target size."""
with tf.name_scope('distorted_bounding_box_crop',
values=[image_buffer, bbox]):
sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
tf.image.extract_jpeg_shape(image_buffer),
bounding_boxes=bbox,
min_object_covered=0.1,
aspect_ratio_range=[0.75, 1.33],
area_range=[0.08, 1.0],
max_attempts=10,
use_image_if_no_bounding_boxes=True)
bbox_begin, bbox_size, _ = sample_distorted_bounding_box
# Crop the image to the specified bounding box.
offset_y, offset_x, _ = tf.unstack(bbox_begin)
target_height, target_width, _ = tf.unstack(bbox_size)
crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
image = tf.image.decode_and_crop_jpeg(image_buffer, crop_window, channels=3)
image = tf.image.convert_image_dtype(
image, dtype=tf.float32)
image = tf.image.resize_bicubic([image],
[image_size, image_size])[0]
return image
def _decode_and_center_crop(image_buffer, image_size):
"""Crops to center of image with padding then scales to target size."""
shape = tf.image.extract_jpeg_shape(image_buffer)
image_height = shape[0]
image_width = shape[1]
padded_center_crop_size = tf.cast(
0.875 * tf.cast(tf.minimum(image_height, image_width), tf.float32),
tf.int32)
offset_height = ((image_height - padded_center_crop_size) + 1) // 2
offset_width = ((image_width - padded_center_crop_size) + 1) // 2
crop_window = tf.stack([offset_height, offset_width,
padded_center_crop_size, padded_center_crop_size])
image = tf.image.decode_and_crop_jpeg(image_buffer, crop_window, channels=3)
image = tf.image.convert_image_dtype(
image, dtype=tf.float32)
image = tf.image.resize_bicubic([image],
[image_size, image_size])[0]
return image
def _normalize(image):
"""Rescale image to [-1, 1] range."""
return tf.multiply(tf.subtract(image, 0.5), 2.0)
def image_preprocessing(image_buffer, bbox, image_size, is_training):
"""Does image decoding and preprocessing.
Args:
image_buffer: string tensor with encoded image.
bbox: bounding box of the object at the image.
image_size: image size.
is_training: whether to do training or eval preprocessing.
Returns:
Tensor with the image.
"""
if is_training:
image = _decode_and_random_crop(image_buffer, bbox, image_size)
image = _normalize(image)
image = tf.image.random_flip_left_right(image)
else:
image = _decode_and_center_crop(image_buffer, image_size)
image = _normalize(image)
image = tf.reshape(image, [image_size, image_size, 3])
return image
def imagenet_parser(value, image_size, is_training):
"""Parse an ImageNet record from a serialized string Tensor.
Args:
value: encoded example.
image_size: size of the output image.
is_training: if True then do training preprocessing,
otherwise do eval preprocessing.
Returns:
image: tensor with the image.
label: true label of the image.
"""
keys_to_features = {
'image/encoded':
tf.FixedLenFeature((), tf.string, ''),
'image/format':
tf.FixedLenFeature((), tf.string, 'jpeg'),
'image/class/label':
tf.FixedLenFeature([], tf.int64, -1),
'image/class/text':
tf.FixedLenFeature([], tf.string, ''),
'image/object/bbox/xmin':
tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin':
tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax':
tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax':
tf.VarLenFeature(dtype=tf.float32),
'image/object/class/label':
tf.VarLenFeature(dtype=tf.int64),
}
parsed = tf.parse_single_example(value, keys_to_features)
image_buffer = tf.reshape(parsed['image/encoded'], shape=[])
xmin = tf.expand_dims(parsed['image/object/bbox/xmin'].values, 0)
ymin = tf.expand_dims(parsed['image/object/bbox/ymin'].values, 0)
xmax = tf.expand_dims(parsed['image/object/bbox/xmax'].values, 0)
ymax = tf.expand_dims(parsed['image/object/bbox/ymax'].values, 0)
# Note that ordering is (y, x)
bbox = tf.concat([ymin, xmin, ymax, xmax], 0)
# Force the variable number of bounding boxes into the shape
# [1, num_boxes, coords].
bbox = tf.expand_dims(bbox, 0)
bbox = tf.transpose(bbox, [0, 2, 1])
image = image_preprocessing(
image_buffer=image_buffer,
bbox=bbox,
image_size=image_size,
is_training=is_training
)
# Labels are in [1, 1000] range
label = tf.cast(
tf.reshape(parsed['image/class/label'], shape=[]), dtype=tf.int32)
return image, label
def imagenet_input(split, batch_size, image_size, is_training):
"""Returns ImageNet dataset.
Args:
split: name of the split, "train" or "validation".
batch_size: size of the minibatch.
image_size: size of the one side of the image. Output images will be
resized to square shape image_size*image_size.
is_training: if True then training preprocessing is done, otherwise eval
preprocessing is done.
Raises:
ValueError: if name of the split is incorrect.
Returns:
Instance of tf.data.Dataset with the dataset.
"""
if split.lower().startswith('train'):
file_pattern = os.path.join(FLAGS.imagenet_data_dir, 'train-*')
elif split.lower().startswith('validation'):
file_pattern = os.path.join(FLAGS.imagenet_data_dir, 'validation-*')
else:
raise ValueError('Invalid split: %s' % split)
dataset = tf.data.Dataset.list_files(file_pattern, shuffle=is_training)
if is_training:
dataset = dataset.repeat()
def fetch_dataset(filename):
return tf.data.TFRecordDataset(filename, buffer_size=8*1024*1024)
# Read the data from disk in parallel
dataset = dataset.apply(
tf.data.experimental.parallel_interleave(
fetch_dataset, cycle_length=4, sloppy=True))
dataset = dataset.shuffle(1024)
# Parse, preprocess, and batch the data in parallel
dataset = dataset.apply(
tf.data.experimental.map_and_batch(
lambda value: imagenet_parser(value, image_size, is_training),
batch_size=batch_size,
num_parallel_batches=4,
drop_remainder=True))
def set_shapes(images, labels):
"""Statically set the batch_size dimension."""
images.set_shape(images.get_shape().merge_with(
tf.TensorShape([batch_size, None, None, None])))
labels.set_shape(labels.get_shape().merge_with(
tf.TensorShape([batch_size])))
return images, labels
# Assign static batch size dimension
dataset = dataset.map(set_shapes)
# Prefetch overlaps in-feed with training
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def num_examples_per_epoch(split):
"""Returns the number of examples in the data set.
Args:
split: name of the split, "train" or "validation".
Raises:
ValueError: if split name is incorrect.
Returns:
Number of example in the split.
"""
if split.lower().startswith('train'):
return 1281167
elif split.lower().startswith('validation'):
return 50000
else:
raise ValueError('Invalid split: %s' % split)