Spaces:
Running
Running
# Copyright 2018 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Imagenet input.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
from absl import flags | |
import tensorflow as tf | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string('imagenet_data_dir', None, | |
'Directory with Imagenet dataset in TFRecord format.') | |
def _decode_and_random_crop(image_buffer, bbox, image_size): | |
"""Randomly crops image and then scales to target size.""" | |
with tf.name_scope('distorted_bounding_box_crop', | |
values=[image_buffer, bbox]): | |
sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( | |
tf.image.extract_jpeg_shape(image_buffer), | |
bounding_boxes=bbox, | |
min_object_covered=0.1, | |
aspect_ratio_range=[0.75, 1.33], | |
area_range=[0.08, 1.0], | |
max_attempts=10, | |
use_image_if_no_bounding_boxes=True) | |
bbox_begin, bbox_size, _ = sample_distorted_bounding_box | |
# Crop the image to the specified bounding box. | |
offset_y, offset_x, _ = tf.unstack(bbox_begin) | |
target_height, target_width, _ = tf.unstack(bbox_size) | |
crop_window = tf.stack([offset_y, offset_x, target_height, target_width]) | |
image = tf.image.decode_and_crop_jpeg(image_buffer, crop_window, channels=3) | |
image = tf.image.convert_image_dtype( | |
image, dtype=tf.float32) | |
image = tf.image.resize_bicubic([image], | |
[image_size, image_size])[0] | |
return image | |
def _decode_and_center_crop(image_buffer, image_size): | |
"""Crops to center of image with padding then scales to target size.""" | |
shape = tf.image.extract_jpeg_shape(image_buffer) | |
image_height = shape[0] | |
image_width = shape[1] | |
padded_center_crop_size = tf.cast( | |
0.875 * tf.cast(tf.minimum(image_height, image_width), tf.float32), | |
tf.int32) | |
offset_height = ((image_height - padded_center_crop_size) + 1) // 2 | |
offset_width = ((image_width - padded_center_crop_size) + 1) // 2 | |
crop_window = tf.stack([offset_height, offset_width, | |
padded_center_crop_size, padded_center_crop_size]) | |
image = tf.image.decode_and_crop_jpeg(image_buffer, crop_window, channels=3) | |
image = tf.image.convert_image_dtype( | |
image, dtype=tf.float32) | |
image = tf.image.resize_bicubic([image], | |
[image_size, image_size])[0] | |
return image | |
def _normalize(image): | |
"""Rescale image to [-1, 1] range.""" | |
return tf.multiply(tf.subtract(image, 0.5), 2.0) | |
def image_preprocessing(image_buffer, bbox, image_size, is_training): | |
"""Does image decoding and preprocessing. | |
Args: | |
image_buffer: string tensor with encoded image. | |
bbox: bounding box of the object at the image. | |
image_size: image size. | |
is_training: whether to do training or eval preprocessing. | |
Returns: | |
Tensor with the image. | |
""" | |
if is_training: | |
image = _decode_and_random_crop(image_buffer, bbox, image_size) | |
image = _normalize(image) | |
image = tf.image.random_flip_left_right(image) | |
else: | |
image = _decode_and_center_crop(image_buffer, image_size) | |
image = _normalize(image) | |
image = tf.reshape(image, [image_size, image_size, 3]) | |
return image | |
def imagenet_parser(value, image_size, is_training): | |
"""Parse an ImageNet record from a serialized string Tensor. | |
Args: | |
value: encoded example. | |
image_size: size of the output image. | |
is_training: if True then do training preprocessing, | |
otherwise do eval preprocessing. | |
Returns: | |
image: tensor with the image. | |
label: true label of the image. | |
""" | |
keys_to_features = { | |
'image/encoded': | |
tf.FixedLenFeature((), tf.string, ''), | |
'image/format': | |
tf.FixedLenFeature((), tf.string, 'jpeg'), | |
'image/class/label': | |
tf.FixedLenFeature([], tf.int64, -1), | |
'image/class/text': | |
tf.FixedLenFeature([], tf.string, ''), | |
'image/object/bbox/xmin': | |
tf.VarLenFeature(dtype=tf.float32), | |
'image/object/bbox/ymin': | |
tf.VarLenFeature(dtype=tf.float32), | |
'image/object/bbox/xmax': | |
tf.VarLenFeature(dtype=tf.float32), | |
'image/object/bbox/ymax': | |
tf.VarLenFeature(dtype=tf.float32), | |
'image/object/class/label': | |
tf.VarLenFeature(dtype=tf.int64), | |
} | |
parsed = tf.parse_single_example(value, keys_to_features) | |
image_buffer = tf.reshape(parsed['image/encoded'], shape=[]) | |
xmin = tf.expand_dims(parsed['image/object/bbox/xmin'].values, 0) | |
ymin = tf.expand_dims(parsed['image/object/bbox/ymin'].values, 0) | |
xmax = tf.expand_dims(parsed['image/object/bbox/xmax'].values, 0) | |
ymax = tf.expand_dims(parsed['image/object/bbox/ymax'].values, 0) | |
# Note that ordering is (y, x) | |
bbox = tf.concat([ymin, xmin, ymax, xmax], 0) | |
# Force the variable number of bounding boxes into the shape | |
# [1, num_boxes, coords]. | |
bbox = tf.expand_dims(bbox, 0) | |
bbox = tf.transpose(bbox, [0, 2, 1]) | |
image = image_preprocessing( | |
image_buffer=image_buffer, | |
bbox=bbox, | |
image_size=image_size, | |
is_training=is_training | |
) | |
# Labels are in [1, 1000] range | |
label = tf.cast( | |
tf.reshape(parsed['image/class/label'], shape=[]), dtype=tf.int32) | |
return image, label | |
def imagenet_input(split, batch_size, image_size, is_training): | |
"""Returns ImageNet dataset. | |
Args: | |
split: name of the split, "train" or "validation". | |
batch_size: size of the minibatch. | |
image_size: size of the one side of the image. Output images will be | |
resized to square shape image_size*image_size. | |
is_training: if True then training preprocessing is done, otherwise eval | |
preprocessing is done. | |
Raises: | |
ValueError: if name of the split is incorrect. | |
Returns: | |
Instance of tf.data.Dataset with the dataset. | |
""" | |
if split.lower().startswith('train'): | |
file_pattern = os.path.join(FLAGS.imagenet_data_dir, 'train-*') | |
elif split.lower().startswith('validation'): | |
file_pattern = os.path.join(FLAGS.imagenet_data_dir, 'validation-*') | |
else: | |
raise ValueError('Invalid split: %s' % split) | |
dataset = tf.data.Dataset.list_files(file_pattern, shuffle=is_training) | |
if is_training: | |
dataset = dataset.repeat() | |
def fetch_dataset(filename): | |
return tf.data.TFRecordDataset(filename, buffer_size=8*1024*1024) | |
# Read the data from disk in parallel | |
dataset = dataset.apply( | |
tf.data.experimental.parallel_interleave( | |
fetch_dataset, cycle_length=4, sloppy=True)) | |
dataset = dataset.shuffle(1024) | |
# Parse, preprocess, and batch the data in parallel | |
dataset = dataset.apply( | |
tf.data.experimental.map_and_batch( | |
lambda value: imagenet_parser(value, image_size, is_training), | |
batch_size=batch_size, | |
num_parallel_batches=4, | |
drop_remainder=True)) | |
def set_shapes(images, labels): | |
"""Statically set the batch_size dimension.""" | |
images.set_shape(images.get_shape().merge_with( | |
tf.TensorShape([batch_size, None, None, None]))) | |
labels.set_shape(labels.get_shape().merge_with( | |
tf.TensorShape([batch_size]))) | |
return images, labels | |
# Assign static batch size dimension | |
dataset = dataset.map(set_shapes) | |
# Prefetch overlaps in-feed with training | |
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) | |
return dataset | |
def num_examples_per_epoch(split): | |
"""Returns the number of examples in the data set. | |
Args: | |
split: name of the split, "train" or "validation". | |
Raises: | |
ValueError: if split name is incorrect. | |
Returns: | |
Number of example in the split. | |
""" | |
if split.lower().startswith('train'): | |
return 1281167 | |
elif split.lower().startswith('validation'): | |
return 50000 | |
else: | |
raise ValueError('Invalid split: %s' % split) | |