Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""A script to export the ALBERT core model as a TF-Hub SavedModel.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
# from __future__ import google_type_annotations | |
from __future__ import print_function | |
from absl import app | |
from absl import flags | |
import tensorflow as tf | |
from typing import Text | |
from official.nlp.albert import configs | |
from official.nlp.bert import bert_models | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string("albert_config_file", None, | |
"Albert configuration file to define core albert layers.") | |
flags.DEFINE_string("model_checkpoint_path", None, | |
"File path to TF model checkpoint.") | |
flags.DEFINE_string("export_path", None, "TF-Hub SavedModel destination path.") | |
flags.DEFINE_string( | |
"sp_model_file", None, | |
"The sentence piece model file that the ALBERT model was trained on.") | |
def create_albert_model( | |
albert_config: configs.AlbertConfig) -> tf.keras.Model: | |
"""Creates an ALBERT keras core model from ALBERT configuration. | |
Args: | |
albert_config: An `AlbertConfig` to create the core model. | |
Returns: | |
A keras model. | |
""" | |
# Adds input layers just as placeholders. | |
input_word_ids = tf.keras.layers.Input( | |
shape=(None,), dtype=tf.int32, name="input_word_ids") | |
input_mask = tf.keras.layers.Input( | |
shape=(None,), dtype=tf.int32, name="input_mask") | |
input_type_ids = tf.keras.layers.Input( | |
shape=(None,), dtype=tf.int32, name="input_type_ids") | |
transformer_encoder = bert_models.get_transformer_encoder( | |
albert_config, sequence_length=None) | |
sequence_output, pooled_output = transformer_encoder( | |
[input_word_ids, input_mask, input_type_ids]) | |
# To keep consistent with legacy hub modules, the outputs are | |
# "pooled_output" and "sequence_output". | |
return tf.keras.Model( | |
inputs=[input_word_ids, input_mask, input_type_ids], | |
outputs=[pooled_output, sequence_output]), transformer_encoder | |
def export_albert_tfhub(albert_config: configs.AlbertConfig, | |
model_checkpoint_path: Text, hub_destination: Text, | |
sp_model_file: Text): | |
"""Restores a tf.keras.Model and saves for TF-Hub.""" | |
core_model, encoder = create_albert_model(albert_config) | |
checkpoint = tf.train.Checkpoint(model=encoder) | |
checkpoint.restore(model_checkpoint_path).assert_consumed() | |
core_model.sp_model_file = tf.saved_model.Asset(sp_model_file) | |
core_model.save(hub_destination, include_optimizer=False, save_format="tf") | |
def main(_): | |
albert_config = configs.AlbertConfig.from_json_file( | |
FLAGS.albert_config_file) | |
export_albert_tfhub(albert_config, FLAGS.model_checkpoint_path, | |
FLAGS.export_path, FLAGS.sp_model_file) | |
if __name__ == "__main__": | |
app.run(main) | |