Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Executes Transformer w/Keras benchmark and accuracy tests.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import time | |
from absl import flags | |
import tensorflow as tf | |
from official.benchmark import benchmark_wrappers | |
from official.benchmark import owner_utils | |
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark | |
from official.nlp.transformer import misc | |
from official.nlp.transformer import transformer_main as transformer_main | |
from official.utils.flags import core as flags_core | |
TRANSFORMER_EN2DE_DATA_DIR_NAME = 'wmt32k-en2de-official' | |
EN2DE_2014_BLEU_DATA_DIR_NAME = 'newstest2014' | |
FLAGS = flags.FLAGS | |
TMP_DIR = os.getenv('TMPDIR') | |
class TransformerBenchmark(PerfZeroBenchmark): | |
"""Methods common to executing transformer w/keras tests. | |
Code under test for the Transformer Keras models report the same data and | |
require the same FLAG setup. | |
""" | |
def __init__(self, output_dir=None, default_flags=None, root_data_dir=None, | |
flag_methods=None, tpu=None): | |
root_data_dir = root_data_dir if root_data_dir else '' | |
self.train_data_dir = os.path.join(root_data_dir, | |
TRANSFORMER_EN2DE_DATA_DIR_NAME) | |
self.vocab_file = os.path.join(root_data_dir, | |
TRANSFORMER_EN2DE_DATA_DIR_NAME, | |
'vocab.ende.32768') | |
self.bleu_source = os.path.join(root_data_dir, | |
EN2DE_2014_BLEU_DATA_DIR_NAME, | |
'newstest2014.en') | |
self.bleu_ref = os.path.join(root_data_dir, | |
EN2DE_2014_BLEU_DATA_DIR_NAME, | |
'newstest2014.de') | |
if default_flags is None: | |
default_flags = {} | |
default_flags['data_dir'] = self.train_data_dir | |
default_flags['vocab_file'] = self.vocab_file | |
super(TransformerBenchmark, self).__init__( | |
output_dir=output_dir, | |
default_flags=default_flags, | |
flag_methods=flag_methods, | |
tpu=tpu) | |
def _run_and_report_benchmark(self, | |
bleu_max=None, | |
bleu_min=None, | |
log_steps=None, | |
total_batch_size=None, | |
warmup=1): | |
"""Report benchmark results by writing to local protobuf file. | |
Args: | |
bleu_max: highest passing level for bleu score. | |
bleu_min: lowest passing level for bleu score. | |
log_steps: How often the log was created for stats['step_timestamp_log']. | |
total_batch_size: Global batch-size. | |
warmup: number of entries in stats['step_timestamp_log'] to ignore. | |
""" | |
start_time_sec = time.time() | |
task = transformer_main.TransformerTask(FLAGS) | |
stats = task.train() | |
wall_time_sec = time.time() - start_time_sec | |
metrics = [] | |
if 'bleu_uncased' in stats: | |
if 'bleu_uncased_history' in stats: | |
bleu_uncased_best = max(stats['bleu_uncased_history'], | |
key=lambda x: x[1]) | |
metrics.append({'name': 'bleu_uncased', | |
'value': bleu_uncased_best[1], | |
'min_value': bleu_min, | |
'max_value': bleu_max}) | |
metrics.append({'name': 'bleu_best_score_iteration', | |
'value': bleu_uncased_best[0]}) | |
metrics.append({'name': 'bleu_uncased_last', | |
'value': stats['bleu_uncased']}) | |
else: | |
metrics.append({'name': 'bleu_uncased', | |
'value': stats['bleu_uncased'], | |
'min_value': bleu_min, | |
'max_value': bleu_max}) | |
if (warmup and 'step_timestamp_log' in stats and | |
len(stats['step_timestamp_log']) > warmup + 1): | |
# first entry in the time_log is start of step 1. The rest of the | |
# entries are the end of each step recorded | |
time_log = stats['step_timestamp_log'] | |
elapsed = time_log[-1].timestamp - time_log[warmup].timestamp | |
num_examples = ( | |
total_batch_size * log_steps * (len(time_log) - warmup - 1)) | |
examples_per_sec = num_examples / elapsed | |
metrics.append({'name': 'exp_per_second', | |
'value': examples_per_sec}) | |
if 'avg_exp_per_second' in stats: | |
metrics.append({'name': 'avg_exp_per_second', | |
'value': stats['avg_exp_per_second']}) | |
if 'step_timestamp_log' in stats: | |
time_log = stats['step_timestamp_log'] | |
metrics.append({'name': 'startup_time', | |
'value': time_log[0].timestamp - start_time_sec}) | |
flags_str = flags_core.get_nondefault_flags_as_str() | |
self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics, | |
extras={'flags': flags_str}) | |
class TransformerBaseKerasAccuracy(TransformerBenchmark): | |
"""Benchmark accuracy tests for Transformer Base model w/ Keras.""" | |
def __init__(self, output_dir=None, root_data_dir=None, **kwargs): | |
"""Benchmark accuracy tests for Transformer Base model w/ Keras. | |
Args: | |
output_dir: directory where to output e.g. log files | |
root_data_dir: directory under which to look for dataset | |
**kwargs: arbitrary named arguments. This is needed to make the | |
constructor forward compatible in case PerfZero provides more | |
named arguments before updating the constructor. | |
""" | |
flag_methods = [misc.define_transformer_flags] | |
super(TransformerBaseKerasAccuracy, self).__init__( | |
output_dir=output_dir, root_data_dir=root_data_dir, | |
flag_methods=flag_methods) | |
def benchmark_1_gpu(self): | |
"""Benchmark 1 gpu. | |
The paper uses 8 GPUs and a much larger effective batch size, this is will | |
not converge to the 27.3 BLEU (uncased) SOTA. | |
""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.data_dir = self.train_data_dir | |
FLAGS.vocab_file = self.vocab_file | |
# Sets values directly to avoid validation check. | |
FLAGS['bleu_source'].value = self.bleu_source | |
FLAGS['bleu_ref'].value = self.bleu_ref | |
FLAGS.param_set = 'base' | |
FLAGS.batch_size = 2048 | |
FLAGS.train_steps = 1000 | |
FLAGS.steps_between_evals = 500 | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu') | |
# These bleu scores are based on test runs after at this limited | |
# number of steps and batch size after verifying SOTA at 8xV100s. | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps, | |
bleu_min=25.3, | |
bleu_max=26) | |
def benchmark_1_gpu_static_batch(self): | |
"""Benchmark 1 gpu with static_batch. | |
The paper uses 8 GPUs and a much larger effective batch size, this is will | |
not converge to the 27.3 BLEU (uncased) SOTA. | |
""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.data_dir = self.train_data_dir | |
FLAGS.vocab_file = self.vocab_file | |
# Sets values directly to avoid validation check. | |
FLAGS['bleu_source'].value = self.bleu_source | |
FLAGS['bleu_ref'].value = self.bleu_ref | |
FLAGS.param_set = 'base' | |
FLAGS.batch_size = 4096 | |
FLAGS.train_steps = 100000 | |
FLAGS.steps_between_evals = 5000 | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_static_batch') | |
# These bleu scores are based on test runs after at this limited | |
# number of steps and batch size after verifying SOTA at 8xV100s. | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps, | |
bleu_min=25.3, | |
bleu_max=26) | |
def benchmark_8_gpu(self): | |
"""Benchmark 8 gpu. | |
Should converge to 27.3 BLEU (uncased). This has not been confirmed yet. | |
""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.data_dir = self.train_data_dir | |
FLAGS.vocab_file = self.vocab_file | |
# Sets values directly to avoid validation check. | |
FLAGS['bleu_source'].value = self.bleu_source | |
FLAGS['bleu_ref'].value = self.bleu_ref | |
FLAGS.param_set = 'base' | |
FLAGS.batch_size = 4096*8 | |
FLAGS.train_steps = 100000 | |
FLAGS.steps_between_evals = 20000 | |
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps, | |
bleu_min=27, | |
bleu_max=28) | |
def benchmark_8_gpu_static_batch(self): | |
"""Benchmark 8 gpu. | |
Should converge to 27.3 BLEU (uncased). This has not been confirmed yet. | |
""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.data_dir = self.train_data_dir | |
FLAGS.vocab_file = self.vocab_file | |
# Sets values directly to avoid validation check. | |
FLAGS['bleu_source'].value = self.bleu_source | |
FLAGS['bleu_ref'].value = self.bleu_ref | |
FLAGS.param_set = 'base' | |
FLAGS.batch_size = 4096*8 | |
FLAGS.train_steps = 100000 | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
FLAGS.steps_between_evals = 5000 | |
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps, | |
bleu_min=27, | |
bleu_max=28) | |
class TransformerBigKerasAccuracy(TransformerBenchmark): | |
"""Benchmark accuracy tests for Transformer Big model w/ Keras.""" | |
def __init__(self, output_dir=None, root_data_dir=None, **kwargs): | |
"""Benchmark accuracy tests for Transformer Big model w/ Keras. | |
Args: | |
output_dir: directory where to output e.g. log files | |
root_data_dir: directory under which to look for dataset | |
**kwargs: arbitrary named arguments. This is needed to make the | |
constructor forward compatible in case PerfZero provides more | |
named arguments before updating the constructor. | |
""" | |
flag_methods = [misc.define_transformer_flags] | |
super(TransformerBigKerasAccuracy, self).__init__( | |
output_dir=output_dir, root_data_dir=root_data_dir, | |
flag_methods=flag_methods) | |
def benchmark_8_gpu(self): | |
"""Benchmark 8 gpu. | |
Over 6 runs with eval every 20K steps the average highest value was 28.195 | |
(bleu uncased). 28.424 was the highest and 27.96 the lowest. The values are | |
the highest value seen during a run and occurred at a median of iteration 9. | |
Iterations are not epochs, an iteration is a number of steps between evals. | |
""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.data_dir = self.train_data_dir | |
FLAGS.vocab_file = self.vocab_file | |
# Sets values directly to avoid validation check. | |
FLAGS['bleu_source'].value = self.bleu_source | |
FLAGS['bleu_ref'].value = self.bleu_ref | |
FLAGS.param_set = 'big' | |
FLAGS.batch_size = 3072*8 | |
FLAGS.train_steps = 20000 * 12 | |
FLAGS.steps_between_evals = 20000 | |
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps, | |
bleu_min=27.9, | |
bleu_max=29.2) | |
def benchmark_8_gpu_static_batch(self): | |
"""Benchmark 8 gpu. | |
Should converge to 28.4 BLEU (uncased). This has not be verified yet." | |
""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.data_dir = self.train_data_dir | |
FLAGS.vocab_file = self.vocab_file | |
# Sets values directly to avoid validation check. | |
FLAGS['bleu_source'].value = self.bleu_source | |
FLAGS['bleu_ref'].value = self.bleu_ref | |
FLAGS.param_set = 'big' | |
FLAGS.batch_size = 3072*8 | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
FLAGS.train_steps = 20000 * 12 | |
FLAGS.steps_between_evals = 20000 | |
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps, | |
bleu_min=28, | |
bleu_max=29.2) | |
def benchmark_8_gpu_fp16(self): | |
"""Benchmark 8 gpu with dynamic batch and fp16. | |
Over 6 runs with eval every 20K steps the average highest value was 28.247 | |
(bleu uncased). 28.424 was the highest and 28.09 the lowest. The values are | |
the highest value seen during a run and occurred at a median of iteration | |
11. While this could be interpreted as worse than FP32, if looking at the | |
first iteration at which 28 is passed FP16 performs equal and possibly | |
better. Although not part of the initial test runs, the highest value | |
recorded with the arguments below was 28.9 at iteration 12. Iterations are | |
not epochs, an iteration is a number of steps between evals. | |
""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.dtype = 'fp16' | |
FLAGS.data_dir = self.train_data_dir | |
FLAGS.vocab_file = self.vocab_file | |
# Sets values directly to avoid validation check. | |
FLAGS['bleu_source'].value = self.bleu_source | |
FLAGS['bleu_ref'].value = self.bleu_ref | |
FLAGS.param_set = 'big' | |
FLAGS.batch_size = 3072*8 | |
FLAGS.train_steps = 20000 * 12 | |
FLAGS.steps_between_evals = 20000 | |
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps, | |
bleu_min=28, | |
bleu_max=29.2) | |
def benchmark_8_gpu_fp16_amp(self): | |
"""Benchmark 8 gpu with dynamic batch and fp16 with automatic mixed precision. | |
Should converge to 28.4 BLEU (uncased). This has not be verified yet." | |
""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.dtype = 'fp16' | |
FLAGS.fp16_implementation = 'graph_rewrite' | |
FLAGS.data_dir = self.train_data_dir | |
FLAGS.vocab_file = self.vocab_file | |
# Sets values directly to avoid validation check. | |
FLAGS['bleu_source'].value = self.bleu_source | |
FLAGS['bleu_ref'].value = self.bleu_ref | |
FLAGS.param_set = 'big' | |
FLAGS.batch_size = 3072*8 | |
FLAGS.train_steps = 20000 * 12 | |
FLAGS.steps_between_evals = 20000 | |
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_amp') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps, | |
bleu_min=28, | |
bleu_max=29) | |
def benchmark_8_gpu_static_batch_fp16(self): | |
"""Benchmark 8 gpu with static batch and fp16. | |
Should converge to 28.4 BLEU (uncased). This has not be verified yet." | |
""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.dtype = 'fp16' | |
FLAGS.data_dir = self.train_data_dir | |
FLAGS.vocab_file = self.vocab_file | |
# Sets values directly to avoid validation check. | |
FLAGS['bleu_source'].value = self.bleu_source | |
FLAGS['bleu_ref'].value = self.bleu_ref | |
FLAGS.param_set = 'big' | |
FLAGS.batch_size = 3072*8 | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
FLAGS.train_steps = 400000 | |
FLAGS.steps_between_evals = 20000 | |
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch_fp16') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps, | |
bleu_min=28, | |
bleu_max=29.2) | |
def benchmark_xla_8_gpu_static_batch_fp16(self): | |
"""Benchmark 8 gpu with static batch, XLA, and FP16. | |
Should converge to 28.4 BLEU (uncased). This has not be verified yet." | |
""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.dtype = 'fp16' | |
FLAGS.enable_xla = True | |
FLAGS.data_dir = self.train_data_dir | |
FLAGS.vocab_file = self.vocab_file | |
# Sets values directly to avoid validation check. | |
FLAGS['bleu_source'].value = self.bleu_source | |
FLAGS['bleu_ref'].value = self.bleu_ref | |
FLAGS.param_set = 'big' | |
FLAGS.batch_size = 3072*8 | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
FLAGS.train_steps = 400000 | |
FLAGS.steps_between_evals = 20000 | |
FLAGS.model_dir = self._get_model_dir( | |
'benchmark_xla_8_gpu_static_batch_fp16') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps, | |
bleu_min=28, | |
bleu_max=29.2) | |
class TransformerKerasBenchmark(TransformerBenchmark): | |
"""Benchmarks for Transformer (Base and Big) using Keras.""" | |
def __init__(self, output_dir=None, default_flags=None, | |
root_data_dir=None, batch_per_gpu=4096, tpu=None): | |
"""Initialize. | |
Args: | |
output_dir: Based directory for saving artifacts, e.g. checkpoints. | |
default_flags: default flags to use for all tests. | |
root_data_dir: root directory for data, e.g. training. | |
batch_per_gpu: batch size to use per gpu. | |
tpu: Target TPU to use. | |
""" | |
flag_methods = [misc.define_transformer_flags] | |
self.batch_per_gpu = batch_per_gpu | |
super(TransformerKerasBenchmark, self).__init__( | |
output_dir=output_dir, | |
default_flags=default_flags, | |
root_data_dir=root_data_dir, | |
flag_methods=flag_methods, | |
tpu=tpu) | |
def benchmark_1_gpu_no_dist_strat(self): | |
"""Benchmark 1 gpu without distribution strategy.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.distribution_strategy = 'off' | |
FLAGS.batch_size = self.batch_per_gpu | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_1_gpu_no_dist_strat_static_batch(self): | |
"""Benchmark 1 gpu without distribution strategy with static batch.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.distribution_strategy = 'off' | |
FLAGS.batch_size = self.batch_per_gpu | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_ds_sb') | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_1_gpu(self): | |
"""Benchmark 1 gpu.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.batch_size = self.batch_per_gpu | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_1_gpu_fp16(self): | |
"""Benchmark 1 gpu FP16.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.batch_size = self.batch_per_gpu | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16') | |
FLAGS.dtype = 'fp16' | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_xla_1_gpu(self): | |
"""Benchmark 1 gpu w/xla.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.batch_size = self.batch_per_gpu | |
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu') | |
FLAGS.enable_xla = True | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_xla_1_gpu_fp16(self): | |
"""Benchmark 1 gpu w/xla and FP16.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.batch_size = self.batch_per_gpu | |
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16') | |
FLAGS.enable_xla = True | |
FLAGS.dtype = 'fp16' | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_1_gpu_static_batch(self): | |
"""Benchmark 1 gpu with static batch.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.batch_size = self.batch_per_gpu | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_static_batch') | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_xla_1_gpu_static_batch(self): | |
"""Benchmark 1 gpu with static batch w/xla.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.batch_size = self.batch_per_gpu | |
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_static_batch') | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
FLAGS.enable_xla = True | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_1_gpu_static_batch_fp16(self): | |
"""Benchmark 1 gpu with static batch FP16.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.batch_size = self.batch_per_gpu | |
FLAGS.model_dir = self._get_model_dir( | |
'benchmark_1_gpu_static_batch_fp16') | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
FLAGS.dtype = 'fp16' | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_xla_1_gpu_static_batch_fp16(self): | |
"""Benchmark 1 gpu with static batch w/xla and FP16.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.batch_size = self.batch_per_gpu | |
FLAGS.model_dir = self._get_model_dir( | |
'benchmark_xla_1_gpu_static_batch_fp16') | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
FLAGS.enable_xla = True | |
FLAGS.dtype = 'fp16' | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_8_gpu(self): | |
"""Benchmark 8 gpu.""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.batch_size = self.batch_per_gpu * 8 | |
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_8_gpu_fp16(self): | |
"""Benchmark 8 gpu FP16.""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.dtype = 'fp16' | |
FLAGS.batch_size = self.batch_per_gpu * 8 | |
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_xla_8_gpu(self): | |
"""Benchmark 8 gpu w/xla.""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.enable_xla = True | |
FLAGS.batch_size = self.batch_per_gpu * 8 | |
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_xla_8_gpu_fp16(self): | |
"""Benchmark 8 gpu w/xla and FP16.""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.enable_xla = True | |
FLAGS.dtype = 'fp16' | |
FLAGS.batch_size = self.batch_per_gpu * 8 | |
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16') | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_8_gpu_static_batch(self): | |
"""Benchmark 8 gpu with static batch.""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.batch_size = self.batch_per_gpu * 8 | |
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch') | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_8_gpu_static_batch_fp16(self): | |
"""Benchmark 8 gpu with static batch FP16.""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.dtype = 'fp16' | |
FLAGS.batch_size = self.batch_per_gpu * 8 | |
FLAGS.model_dir = self._get_model_dir( | |
'benchmark_8_gpu_static_batch_fp16') | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_xla_8_gpu_static_batch(self): | |
"""Benchmark 8 gpu with static batch w/xla.""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.enable_xla = True | |
FLAGS.batch_size = self.batch_per_gpu * 8 | |
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_static_batch') | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_xla_8_gpu_static_batch_fp16(self): | |
"""Benchmark 8 gpu with static batch w/xla and FP16.""" | |
self._setup() | |
FLAGS.num_gpus = 8 | |
FLAGS.enable_xla = True | |
FLAGS.dtype = 'fp16' | |
FLAGS.batch_size = self.batch_per_gpu * 8 | |
FLAGS.model_dir = self._get_model_dir( | |
'benchmark_xla_8_gpu_static_batch_fp16') | |
FLAGS.static_batch = True | |
FLAGS.max_length = 64 | |
self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
class TransformerBaseKerasBenchmarkReal(TransformerKerasBenchmark): | |
"""Transformer based version real data benchmark tests.""" | |
def __init__(self, output_dir=TMP_DIR, root_data_dir=TMP_DIR, **kwargs): | |
def_flags = {} | |
def_flags['param_set'] = 'base' | |
def_flags['train_steps'] = 50 | |
def_flags['log_steps'] = 10 | |
super(TransformerBaseKerasBenchmarkReal, self).__init__( | |
output_dir=output_dir, default_flags=def_flags, | |
root_data_dir=root_data_dir, batch_per_gpu=4096) | |
class TransformerBigKerasBenchmarkReal(TransformerKerasBenchmark): | |
"""Transformer based version real data benchmark tests.""" | |
def __init__(self, output_dir=TMP_DIR, root_data_dir=TMP_DIR, | |
tpu=None, **kwargs): | |
def_flags = {} | |
def_flags['param_set'] = 'big' | |
def_flags['train_steps'] = 50 | |
def_flags['log_steps'] = 10 | |
super(TransformerBigKerasBenchmarkReal, self).__init__( | |
output_dir=output_dir, default_flags=def_flags, | |
root_data_dir=root_data_dir, batch_per_gpu=3072, | |
tpu=tpu) | |
def benchmark_2x2_tpu(self): | |
"""Port of former snaggletooth transformer_big model on 2x2.""" | |
self._setup() | |
FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu') | |
FLAGS.train_steps = 300 | |
FLAGS.log_steps = 150 | |
FLAGS.steps_between_evals = 150 | |
FLAGS.distribution_strategy = 'tpu' | |
FLAGS.static_batch = True | |
FLAGS.use_ctl = True | |
FLAGS.batch_size = 6144 | |
FLAGS.max_length = 64 | |
FLAGS.decode_batch_size = 32 | |
FLAGS.decode_max_length = 97 | |
FLAGS.padded_decode = True | |
FLAGS.enable_checkpointing = False | |
self._run_and_report_benchmark( | |
total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_4x4_tpu(self): | |
"""Port of former GCP transformer_big model on 4x4.""" | |
self._setup() | |
FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu') | |
FLAGS.train_steps = 300 | |
FLAGS.log_steps = 150 | |
FLAGS.steps_between_evals = 150 | |
FLAGS.distribution_strategy = 'tpu' | |
FLAGS.static_batch = True | |
FLAGS.use_ctl = True | |
FLAGS.batch_size = 24576 | |
FLAGS.max_length = 64 | |
FLAGS.decode_batch_size = 32 | |
FLAGS.decode_max_length = 97 | |
FLAGS.padded_decode = True | |
FLAGS.enable_checkpointing = False | |
self._run_and_report_benchmark( | |
total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_4x4_tpu_mlir(self): | |
"""Run transformer_big model on 4x4 with the MLIR Bridge enabled.""" | |
self._setup() | |
FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu') | |
FLAGS.train_steps = 300 | |
FLAGS.log_steps = 150 | |
FLAGS.steps_between_evals = 150 | |
FLAGS.distribution_strategy = 'tpu' | |
FLAGS.static_batch = True | |
FLAGS.use_ctl = True | |
FLAGS.batch_size = 24576 | |
FLAGS.max_length = 64 | |
FLAGS.decode_batch_size = 32 | |
FLAGS.decode_max_length = 97 | |
FLAGS.padded_decode = True | |
FLAGS.enable_checkpointing = False | |
tf.config.experimental.enable_mlir_bridge() | |
self._run_and_report_benchmark( | |
total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
if __name__ == '__main__': | |
tf.test.main() | |