Spaces:
Sleeping
Sleeping
"""Model for sentiment analysis. | |
The model makes use of concatenation of two CNN layers with | |
different kernel sizes. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
class CNN(tf.keras.models.Model): | |
"""CNN for sentimental analysis.""" | |
def __init__(self, emb_dim, num_words, sentence_length, hid_dim, | |
class_dim, dropout_rate): | |
"""Initialize CNN model. | |
Args: | |
emb_dim: The dimension of the Embedding layer. | |
num_words: The number of the most frequent tokens | |
to be used from the corpus. | |
sentence_length: The number of words in each sentence. | |
Longer sentences get cut, shorter ones padded. | |
hid_dim: The dimension of the Embedding layer. | |
class_dim: The number of the CNN layer filters. | |
dropout_rate: The portion of kept value in the Dropout layer. | |
Returns: | |
tf.keras.models.Model: A Keras model. | |
""" | |
input_layer = tf.keras.layers.Input(shape=(sentence_length,), dtype=tf.int32) | |
layer = tf.keras.layers.Embedding(num_words, output_dim=emb_dim)(input_layer) | |
layer_conv3 = tf.keras.layers.Conv1D(hid_dim, 3, activation="relu")(layer) | |
layer_conv3 = tf.keras.layers.GlobalMaxPooling1D()(layer_conv3) | |
layer_conv4 = tf.keras.layers.Conv1D(hid_dim, 2, activation="relu")(layer) | |
layer_conv4 = tf.keras.layers.GlobalMaxPooling1D()(layer_conv4) | |
layer = tf.keras.layers.concatenate([layer_conv4, layer_conv3], axis=1) | |
layer = tf.keras.layers.BatchNormalization()(layer) | |
layer = tf.keras.layers.Dropout(dropout_rate)(layer) | |
output = tf.keras.layers.Dense(class_dim, activation="softmax")(layer) | |
super(CNN, self).__init__(inputs=[input_layer], outputs=output) | |