Spaces:
Running
Running
# Copyright 2017 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import functools | |
import tensorflow as tf | |
import numpy as np | |
from scipy.misc import logsumexp | |
import tensorflow.contrib.slim as slim | |
from tensorflow.python.ops import init_ops | |
import utils as U | |
try: | |
xrange # Python 2 | |
except NameError: | |
xrange = range # Python 3 | |
FLAGS = tf.flags.FLAGS | |
Q_COLLECTION = "q_collection" | |
P_COLLECTION = "p_collection" | |
class SBN(object): # REINFORCE | |
def __init__(self, | |
hparams, | |
activation_func=tf.nn.sigmoid, | |
mean_xs = None, | |
eval_mode=False): | |
self.eval_mode = eval_mode | |
self.hparams = hparams | |
self.mean_xs = mean_xs | |
self.train_bias= -np.log(1./np.clip(mean_xs, 0.001, 0.999)-1.).astype(np.float32) | |
self.activation_func = activation_func | |
self.n_samples = tf.placeholder('int32') | |
self.x = tf.placeholder('float', [None, self.hparams.n_input]) | |
self._x = tf.tile(self.x, [self.n_samples, 1]) | |
self.batch_size = tf.shape(self._x)[0] | |
self.uniform_samples = dict() | |
self.uniform_samples_v = dict() | |
self.prior = tf.Variable(tf.zeros([self.hparams.n_hidden], | |
dtype=tf.float32), | |
name='p_prior', | |
collections=[tf.GraphKeys.GLOBAL_VARIABLES, P_COLLECTION]) | |
self.run_recognition_network = False | |
self.run_generator_network = False | |
# Initialize temperature | |
self.pre_temperature_variable = tf.Variable( | |
np.log(self.hparams.temperature), | |
trainable=False, | |
dtype=tf.float32) | |
self.temperature_variable = tf.exp(self.pre_temperature_variable) | |
self.global_step = tf.Variable(0, trainable=False) | |
self.baseline_loss = [] | |
self.ema = tf.train.ExponentialMovingAverage(decay=0.999) | |
self.maintain_ema_ops = [] | |
self.optimizer_class = tf.train.AdamOptimizer( | |
learning_rate=1*self.hparams.learning_rate, | |
beta2=self.hparams.beta2) | |
self._generate_randomness() | |
self._create_network() | |
def initialize(self, sess): | |
self.sess = sess | |
def _create_eta(self, shape=[], collection='CV'): | |
return 2 * tf.sigmoid(tf.Variable(tf.zeros(shape), trainable=False, | |
collections=[collection, tf.GraphKeys.GLOBAL_VARIABLES, Q_COLLECTION])) | |
def _create_baseline(self, n_output=1, n_hidden=100, | |
is_zero_init=False, | |
collection='BASELINE'): | |
# center input | |
h = self._x | |
if self.mean_xs is not None: | |
h -= self.mean_xs | |
if is_zero_init: | |
initializer = init_ops.zeros_initializer() | |
else: | |
initializer = slim.variance_scaling_initializer() | |
with slim.arg_scope([slim.fully_connected], | |
variables_collections=[collection, Q_COLLECTION], | |
trainable=False, | |
weights_initializer=initializer): | |
h = slim.fully_connected(h, n_hidden, activation_fn=tf.nn.tanh) | |
baseline = slim.fully_connected(h, n_output, activation_fn=None) | |
if n_output == 1: | |
baseline = tf.reshape(baseline, [-1]) # very important to reshape | |
return baseline | |
def _create_transformation(self, input, n_output, reuse, scope_prefix): | |
"""Create the deterministic transformation between stochastic layers. | |
If self.hparam.nonlinear: | |
2 x tanh layers | |
Else: | |
1 x linear layer | |
""" | |
if self.hparams.nonlinear: | |
h = slim.fully_connected(input, | |
self.hparams.n_hidden, | |
reuse=reuse, | |
activation_fn=tf.nn.tanh, | |
scope='%s_nonlinear_1' % scope_prefix) | |
h = slim.fully_connected(h, | |
self.hparams.n_hidden, | |
reuse=reuse, | |
activation_fn=tf.nn.tanh, | |
scope='%s_nonlinear_2' % scope_prefix) | |
h = slim.fully_connected(h, | |
n_output, | |
reuse=reuse, | |
activation_fn=None, | |
scope='%s' % scope_prefix) | |
else: | |
h = slim.fully_connected(input, | |
n_output, | |
reuse=reuse, | |
activation_fn=None, | |
scope='%s' % scope_prefix) | |
return h | |
def _recognition_network(self, sampler=None, log_likelihood_func=None): | |
"""x values -> samples from Q and return log Q(h|x).""" | |
samples = {} | |
reuse = None if not self.run_recognition_network else True | |
# Set defaults | |
if sampler is None: | |
sampler = self._random_sample | |
if log_likelihood_func is None: | |
log_likelihood_func = lambda sample, log_params: ( | |
U.binary_log_likelihood(sample['activation'], log_params)) | |
logQ = [] | |
if self.hparams.task in ['sbn', 'omni']: | |
# Initialize the edge case | |
samples[-1] = {'activation': self._x} | |
if self.mean_xs is not None: | |
samples[-1]['activation'] -= self.mean_xs # center the input | |
samples[-1]['activation'] = (samples[-1]['activation'] + 1)/2.0 | |
with slim.arg_scope([slim.fully_connected], | |
weights_initializer=slim.variance_scaling_initializer(), | |
variables_collections=[Q_COLLECTION]): | |
for i in xrange(self.hparams.n_layer): | |
# Set up the input to the layer | |
input = 2.0*samples[i-1]['activation'] - 1.0 | |
# Create the conditional distribution (output is the logits) | |
h = self._create_transformation(input, | |
n_output=self.hparams.n_hidden, | |
reuse=reuse, | |
scope_prefix='q_%d' % i) | |
samples[i] = sampler(h, self.uniform_samples[i], i) | |
logQ.append(log_likelihood_func(samples[i], h)) | |
self.run_recognition_network = True | |
return logQ, samples | |
elif self.hparams.task == 'sp': | |
# Initialize the edge case | |
samples[-1] = {'activation': tf.split(self._x, | |
num_or_size_splits=2, | |
axis=1)[0]} # top half of digit | |
if self.mean_xs is not None: | |
samples[-1]['activation'] -= np.split(self.mean_xs, 2, 0)[0] # center the input | |
samples[-1]['activation'] = (samples[-1]['activation'] + 1)/2.0 | |
with slim.arg_scope([slim.fully_connected], | |
weights_initializer=slim.variance_scaling_initializer(), | |
variables_collections=[Q_COLLECTION]): | |
for i in xrange(self.hparams.n_layer): | |
# Set up the input to the layer | |
input = 2.0*samples[i-1]['activation'] - 1.0 | |
# Create the conditional distribution (output is the logits) | |
h = self._create_transformation(input, | |
n_output=self.hparams.n_hidden, | |
reuse=reuse, | |
scope_prefix='q_%d' % i) | |
samples[i] = sampler(h, self.uniform_samples[i], i) | |
logQ.append(log_likelihood_func(samples[i], h)) | |
self.run_recognition_network = True | |
return logQ, samples | |
def _generator_network(self, samples, logQ, log_likelihood_func=None): | |
'''Returns learning signal and function. | |
This is the implementation for SBNs for the ELBO. | |
Args: | |
samples: dictionary of sampled latent variables | |
logQ: list of log q(h_i) terms | |
log_likelihood_func: function used to compute log probs for the latent | |
variables | |
Returns: | |
learning_signal: the "reward" function | |
function_term: part of the function that depends on the parameters | |
and needs to have the gradient taken through | |
''' | |
reuse=None if not self.run_generator_network else True | |
if self.hparams.task in ['sbn', 'omni']: | |
if log_likelihood_func is None: | |
log_likelihood_func = lambda sample, log_params: ( | |
U.binary_log_likelihood(sample['activation'], log_params)) | |
logPPrior = log_likelihood_func( | |
samples[self.hparams.n_layer-1], | |
tf.expand_dims(self.prior, 0)) | |
with slim.arg_scope([slim.fully_connected], | |
weights_initializer=slim.variance_scaling_initializer(), | |
variables_collections=[P_COLLECTION]): | |
for i in reversed(xrange(self.hparams.n_layer)): | |
if i == 0: | |
n_output = self.hparams.n_input | |
else: | |
n_output = self.hparams.n_hidden | |
input = 2.0*samples[i]['activation']-1.0 | |
h = self._create_transformation(input, | |
n_output, | |
reuse=reuse, | |
scope_prefix='p_%d' % i) | |
if i == 0: | |
# Assume output is binary | |
logP = U.binary_log_likelihood(self._x, h + self.train_bias) | |
else: | |
logPPrior += log_likelihood_func(samples[i-1], h) | |
self.run_generator_network = True | |
return logP + logPPrior - tf.add_n(logQ), logP + logPPrior | |
elif self.hparams.task == 'sp': | |
with slim.arg_scope([slim.fully_connected], | |
weights_initializer=slim.variance_scaling_initializer(), | |
variables_collections=[P_COLLECTION]): | |
n_output = int(self.hparams.n_input/2) | |
i = self.hparams.n_layer - 1 # use the last layer | |
input = 2.0*samples[i]['activation']-1.0 | |
h = self._create_transformation(input, | |
n_output, | |
reuse=reuse, | |
scope_prefix='p_%d' % i) | |
# Predict on the lower half of the image | |
logP = U.binary_log_likelihood(tf.split(self._x, | |
num_or_size_splits=2, | |
axis=1)[1], | |
h + np.split(self.train_bias, 2, 0)[1]) | |
self.run_generator_network = True | |
return logP, logP | |
def _create_loss(self): | |
# Hard loss | |
logQHard, samples = self._recognition_network() | |
reinforce_learning_signal, reinforce_model_grad = self._generator_network(samples, logQHard) | |
logQHard = tf.add_n(logQHard) | |
# REINFORCE | |
learning_signal = tf.stop_gradient(U.center(reinforce_learning_signal)) | |
self.optimizerLoss = -(learning_signal*logQHard + | |
reinforce_model_grad) | |
self.lHat = map(tf.reduce_mean, [ | |
reinforce_learning_signal, | |
U.rms(learning_signal), | |
]) | |
return reinforce_learning_signal | |
def _reshape(self, t): | |
return tf.transpose(tf.reshape(t, | |
[self.n_samples, -1])) | |
def compute_tensor_variance(self, t): | |
"""Compute the mean per component variance. | |
Use a moving average to estimate the required moments. | |
""" | |
t_sq = tf.reduce_mean(tf.square(t)) | |
self.maintain_ema_ops.append(self.ema.apply([t, t_sq])) | |
# mean per component variance | |
variance_estimator = (self.ema.average(t_sq) - | |
tf.reduce_mean( | |
tf.square(self.ema.average(t)))) | |
return variance_estimator | |
def _create_train_op(self, grads_and_vars, extra_grads_and_vars=[]): | |
''' | |
Args: | |
grads_and_vars: gradients to apply and compute running average variance | |
extra_grads_and_vars: gradients to apply (not used to compute average variance) | |
''' | |
# Variance summaries | |
first_moment = U.vectorize(grads_and_vars, skip_none=True) | |
second_moment = tf.square(first_moment) | |
self.maintain_ema_ops.append(self.ema.apply([first_moment, second_moment])) | |
# Add baseline losses | |
if len(self.baseline_loss) > 0: | |
mean_baseline_loss = tf.reduce_mean(tf.add_n(self.baseline_loss)) | |
extra_grads_and_vars += self.optimizer_class.compute_gradients( | |
mean_baseline_loss, | |
var_list=tf.get_collection('BASELINE')) | |
# Ensure that all required tensors are computed before updates are executed | |
extra_optimizer = tf.train.AdamOptimizer( | |
learning_rate=10*self.hparams.learning_rate, | |
beta2=self.hparams.beta2) | |
with tf.control_dependencies( | |
[tf.group(*[g for g, _ in (grads_and_vars + extra_grads_and_vars) if g is not None])]): | |
# Filter out the P_COLLECTION variables if we're in eval mode | |
if self.eval_mode: | |
grads_and_vars = [(g, v) for g, v in grads_and_vars | |
if v not in tf.get_collection(P_COLLECTION)] | |
train_op = self.optimizer_class.apply_gradients(grads_and_vars, | |
global_step=self.global_step) | |
if len(extra_grads_and_vars) > 0: | |
extra_train_op = extra_optimizer.apply_gradients(extra_grads_and_vars) | |
else: | |
extra_train_op = tf.no_op() | |
self.optimizer = tf.group(train_op, extra_train_op, *self.maintain_ema_ops) | |
# per parameter variance | |
variance_estimator = (self.ema.average(second_moment) - | |
tf.square(self.ema.average(first_moment))) | |
self.grad_variance = tf.reduce_mean(variance_estimator) | |
def _create_network(self): | |
logF = self._create_loss() | |
self.optimizerLoss = tf.reduce_mean(self.optimizerLoss) | |
# Setup optimizer | |
grads_and_vars = self.optimizer_class.compute_gradients(self.optimizerLoss) | |
self._create_train_op(grads_and_vars) | |
# Create IWAE lower bound for evaluation | |
self.logF = self._reshape(logF) | |
self.iwae = tf.reduce_mean(U.logSumExp(self.logF, axis=1) - | |
tf.log(tf.to_float(self.n_samples))) | |
def partial_fit(self, X, n_samples=1): | |
if hasattr(self, 'grad_variances'): | |
grad_variance_field_to_return = self.grad_variances | |
else: | |
grad_variance_field_to_return = self.grad_variance | |
_, res, grad_variance, step, temperature = self.sess.run( | |
(self.optimizer, self.lHat, grad_variance_field_to_return, self.global_step, self.temperature_variable), | |
feed_dict={self.x: X, self.n_samples: n_samples}) | |
return res, grad_variance, step, temperature | |
def partial_grad(self, X, n_samples=1): | |
control_variate_grads, step = self.sess.run( | |
(self.control_variate_grads, self.global_step), | |
feed_dict={self.x: X, self.n_samples: n_samples}) | |
return control_variate_grads, step | |
def partial_eval(self, X, n_samples=5): | |
if n_samples < 1000: | |
res, iwae = self.sess.run( | |
(self.lHat, self.iwae), | |
feed_dict={self.x: X, self.n_samples: n_samples}) | |
res = [iwae] + res | |
else: # special case to handle OOM | |
assert n_samples % 100 == 0, "When using large # of samples, it must be divisble by 100" | |
res = [] | |
for i in xrange(int(n_samples/100)): | |
logF, = self.sess.run( | |
(self.logF,), | |
feed_dict={self.x: X, self.n_samples: 100}) | |
res.append(logsumexp(logF, axis=1)) | |
res = [np.mean(logsumexp(res, axis=0) - np.log(n_samples))] | |
return res | |
# Random samplers | |
def _mean_sample(self, log_alpha, _, layer): | |
"""Returns mean of random variables parameterized by log_alpha.""" | |
mu = tf.nn.sigmoid(log_alpha) | |
return { | |
'preactivation': mu, | |
'activation': mu, | |
'log_param': log_alpha, | |
} | |
def _generate_randomness(self): | |
for i in xrange(self.hparams.n_layer): | |
self.uniform_samples[i] = tf.stop_gradient(tf.random_uniform( | |
[self.batch_size, self.hparams.n_hidden])) | |
def _u_to_v(self, log_alpha, u, eps = 1e-8): | |
"""Convert u to tied randomness in v.""" | |
u_prime = tf.nn.sigmoid(-log_alpha) # g(u') = 0 | |
v_1 = (u - u_prime) / tf.clip_by_value(1 - u_prime, eps, 1) | |
v_1 = tf.clip_by_value(v_1, 0, 1) | |
v_1 = tf.stop_gradient(v_1) | |
v_1 = v_1*(1 - u_prime) + u_prime | |
v_0 = u / tf.clip_by_value(u_prime, eps, 1) | |
v_0 = tf.clip_by_value(v_0, 0, 1) | |
v_0 = tf.stop_gradient(v_0) | |
v_0 = v_0 * u_prime | |
v = tf.where(u > u_prime, v_1, v_0) | |
v = tf.check_numerics(v, 'v sampling is not numerically stable.') | |
v = v + tf.stop_gradient(-v + u) # v and u are the same up to numerical errors | |
return v | |
def _random_sample(self, log_alpha, u, layer): | |
"""Returns sampled random variables parameterized by log_alpha.""" | |
# Generate tied randomness for later | |
if layer not in self.uniform_samples_v: | |
self.uniform_samples_v[layer] = self._u_to_v(log_alpha, u) | |
# Sample random variable underlying softmax/argmax | |
x = log_alpha + U.safe_log_prob(u) - U.safe_log_prob(1 - u) | |
samples = tf.stop_gradient(tf.to_float(x > 0)) | |
return { | |
'preactivation': x, | |
'activation': samples, | |
'log_param': log_alpha, | |
} | |
def _random_sample_soft(self, log_alpha, u, layer, temperature=None): | |
"""Returns sampled random variables parameterized by log_alpha.""" | |
if temperature is None: | |
temperature = self.hparams.temperature | |
# Sample random variable underlying softmax/argmax | |
x = log_alpha + U.safe_log_prob(u) - U.safe_log_prob(1 - u) | |
x /= tf.expand_dims(temperature, -1) | |
if self.hparams.muprop_relaxation: | |
y = tf.nn.sigmoid(x + log_alpha * tf.expand_dims(temperature/(temperature + 1), -1)) | |
else: | |
y = tf.nn.sigmoid(x) | |
return { | |
'preactivation': x, | |
'activation': y, | |
'log_param': log_alpha | |
} | |
def _random_sample_soft_v(self, log_alpha, _, layer, temperature=None): | |
"""Returns sampled random variables parameterized by log_alpha.""" | |
v = self.uniform_samples_v[layer] | |
return self._random_sample_soft(log_alpha, v, layer, temperature) | |
def get_gumbel_gradient(self): | |
logQ, softSamples = self._recognition_network(sampler=self._random_sample_soft) | |
logQ = tf.add_n(logQ) | |
logPPrior, logP = self._generator_network(softSamples) | |
softELBO = logPPrior + logP - logQ | |
gumbel_gradient = (self.optimizer_class. | |
compute_gradients(softELBO)) | |
debug = { | |
'softELBO': softELBO, | |
} | |
return gumbel_gradient, debug | |
# samplers used for quadratic version | |
def _random_sample_switch(self, log_alpha, u, layer, switch_layer, temperature=None): | |
"""Run partial discrete, then continuous path. | |
Args: | |
switch_layer: this layer and beyond will be continuous | |
""" | |
if layer < switch_layer: | |
return self._random_sample(log_alpha, u, layer) | |
else: | |
return self._random_sample_soft(log_alpha, u, layer, temperature) | |
def _random_sample_switch_v(self, log_alpha, u, layer, switch_layer, temperature=None): | |
"""Run partial discrete, then continuous path. | |
Args: | |
switch_layer: this layer and beyond will be continuous | |
""" | |
if layer < switch_layer: | |
return self._random_sample(log_alpha, u, layer) | |
else: | |
return self._random_sample_soft_v(log_alpha, u, layer, temperature) | |
# ##### | |
# Gradient computation | |
# ##### | |
def get_nvil_gradient(self): | |
"""Compute the NVIL gradient.""" | |
# Hard loss | |
logQHard, samples = self._recognition_network() | |
ELBO, reinforce_model_grad = self._generator_network(samples, logQHard) | |
logQHard = tf.add_n(logQHard) | |
# Add baselines (no variance normalization) | |
learning_signal = tf.stop_gradient(ELBO) - self._create_baseline() | |
# Set up losses | |
self.baseline_loss.append(tf.square(learning_signal)) | |
optimizerLoss = -(tf.stop_gradient(learning_signal)*logQHard + | |
reinforce_model_grad) | |
optimizerLoss = tf.reduce_mean(optimizerLoss) | |
nvil_gradient = self.optimizer_class.compute_gradients(optimizerLoss) | |
debug = { | |
'ELBO': ELBO, | |
'RMS of centered learning signal': U.rms(learning_signal), | |
} | |
return nvil_gradient, debug | |
def get_simple_muprop_gradient(self): | |
""" Computes the simple muprop gradient. | |
This muprop control variate does not include the linear term. | |
""" | |
# Hard loss | |
logQHard, hardSamples = self._recognition_network() | |
hardELBO, reinforce_model_grad = self._generator_network(hardSamples, logQHard) | |
# Soft loss | |
logQ, muSamples = self._recognition_network(sampler=self._mean_sample) | |
muELBO, _ = self._generator_network(muSamples, logQ) | |
scaling_baseline = self._create_eta(collection='BASELINE') | |
learning_signal = (hardELBO | |
- scaling_baseline * muELBO | |
- self._create_baseline()) | |
self.baseline_loss.append(tf.square(learning_signal)) | |
optimizerLoss = -(tf.stop_gradient(learning_signal) * tf.add_n(logQHard) | |
+ reinforce_model_grad) | |
optimizerLoss = tf.reduce_mean(optimizerLoss) | |
simple_muprop_gradient = (self.optimizer_class. | |
compute_gradients(optimizerLoss)) | |
debug = { | |
'ELBO': hardELBO, | |
'muELBO': muELBO, | |
'RMS': U.rms(learning_signal), | |
} | |
return simple_muprop_gradient, debug | |
def get_muprop_gradient(self): | |
""" | |
random sample function that actually returns mean | |
new forward pass that returns logQ as a list | |
can get x_i from samples | |
""" | |
# Hard loss | |
logQHard, hardSamples = self._recognition_network() | |
hardELBO, reinforce_model_grad = self._generator_network(hardSamples, logQHard) | |
# Soft loss | |
logQ, muSamples = self._recognition_network(sampler=self._mean_sample) | |
muELBO, _ = self._generator_network(muSamples, logQ) | |
# Compute gradients | |
muELBOGrads = tf.gradients(tf.reduce_sum(muELBO), | |
[ muSamples[i]['activation'] for | |
i in xrange(self.hparams.n_layer) ]) | |
# Compute MuProp gradient estimates | |
learning_signal = hardELBO | |
optimizerLoss = 0.0 | |
learning_signals = [] | |
for i in xrange(self.hparams.n_layer): | |
dfDiff = tf.reduce_sum( | |
muELBOGrads[i] * (hardSamples[i]['activation'] - | |
muSamples[i]['activation']), | |
axis=1) | |
dfMu = tf.reduce_sum( | |
tf.stop_gradient(muELBOGrads[i]) * | |
tf.nn.sigmoid(hardSamples[i]['log_param']), | |
axis=1) | |
scaling_baseline_0 = self._create_eta(collection='BASELINE') | |
scaling_baseline_1 = self._create_eta(collection='BASELINE') | |
learning_signals.append(learning_signal - scaling_baseline_0 * muELBO - scaling_baseline_1 * dfDiff - self._create_baseline()) | |
self.baseline_loss.append(tf.square(learning_signals[i])) | |
optimizerLoss += ( | |
logQHard[i] * tf.stop_gradient(learning_signals[i]) + | |
tf.stop_gradient(scaling_baseline_1) * dfMu) | |
optimizerLoss += reinforce_model_grad | |
optimizerLoss *= -1 | |
optimizerLoss = tf.reduce_mean(optimizerLoss) | |
muprop_gradient = self.optimizer_class.compute_gradients(optimizerLoss) | |
debug = { | |
'ELBO': hardELBO, | |
'muELBO': muELBO, | |
} | |
debug.update(dict([ | |
('RMS learning signal layer %d' % i, U.rms(learning_signal)) | |
for (i, learning_signal) in enumerate(learning_signals)])) | |
return muprop_gradient, debug | |
# REBAR gradient helper functions | |
def _create_gumbel_control_variate(self, logQHard, temperature=None): | |
'''Calculate gumbel control variate. | |
''' | |
if temperature is None: | |
temperature = self.hparams.temperature | |
logQ, softSamples = self._recognition_network(sampler=functools.partial( | |
self._random_sample_soft, temperature=temperature)) | |
softELBO, _ = self._generator_network(softSamples, logQ) | |
logQ = tf.add_n(logQ) | |
# Generate the softELBO_v (should be the same value but different grads) | |
logQ_v, softSamples_v = self._recognition_network(sampler=functools.partial( | |
self._random_sample_soft_v, temperature=temperature)) | |
softELBO_v, _ = self._generator_network(softSamples_v, logQ_v) | |
logQ_v = tf.add_n(logQ_v) | |
# Compute losses | |
learning_signal = tf.stop_gradient(softELBO_v) | |
# Control variate | |
h = (tf.stop_gradient(learning_signal) * tf.add_n(logQHard) | |
- softELBO + softELBO_v) | |
extra = (softELBO_v, -softELBO + softELBO_v) | |
return h, extra | |
def _create_gumbel_control_variate_quadratic(self, logQHard, temperature=None): | |
'''Calculate gumbel control variate. | |
''' | |
if temperature is None: | |
temperature = self.hparams.temperature | |
h = 0 | |
extra = [] | |
for layer in xrange(self.hparams.n_layer): | |
logQ, softSamples = self._recognition_network(sampler=functools.partial( | |
self._random_sample_switch, switch_layer=layer, temperature=temperature)) | |
softELBO, _ = self._generator_network(softSamples, logQ) | |
# Generate the softELBO_v (should be the same value but different grads) | |
logQ_v, softSamples_v = self._recognition_network(sampler=functools.partial( | |
self._random_sample_switch_v, switch_layer=layer, temperature=temperature)) | |
softELBO_v, _ = self._generator_network(softSamples_v, logQ_v) | |
# Compute losses | |
learning_signal = tf.stop_gradient(softELBO_v) | |
# Control variate | |
h += (tf.stop_gradient(learning_signal) * logQHard[layer] | |
- softELBO + softELBO_v) | |
extra.append((softELBO_v, -softELBO + softELBO_v)) | |
return h, extra | |
def _create_hard_elbo(self): | |
logQHard, hardSamples = self._recognition_network() | |
hardELBO, reinforce_model_grad = self._generator_network(hardSamples, logQHard) | |
reinforce_learning_signal = tf.stop_gradient(hardELBO) | |
# Center learning signal | |
baseline = self._create_baseline(collection='CV') | |
reinforce_learning_signal = tf.stop_gradient(reinforce_learning_signal) - baseline | |
nvil_gradient = (tf.stop_gradient(hardELBO) - baseline) * tf.add_n(logQHard) + reinforce_model_grad | |
return hardELBO, nvil_gradient, logQHard | |
def multiply_by_eta(self, h_grads, eta): | |
# Modifies eta | |
res = [] | |
eta_statistics = [] | |
for (g, v) in h_grads: | |
if g is None: | |
res.append((g, v)) | |
else: | |
if 'network' not in eta: | |
eta['network'] = self._create_eta() | |
res.append((g*eta['network'], v)) | |
eta_statistics.append(eta['network']) | |
return res, eta_statistics | |
def multiply_by_eta_per_layer(self, h_grads, eta): | |
# Modifies eta | |
res = [] | |
eta_statistics = [] | |
for (g, v) in h_grads: | |
if g is None: | |
res.append((g, v)) | |
else: | |
if v not in eta: | |
eta[v] = self._create_eta() | |
res.append((g*eta[v], v)) | |
eta_statistics.append(eta[v]) | |
return res, eta_statistics | |
def multiply_by_eta_per_unit(self, h_grads, eta): | |
# Modifies eta | |
res = [] | |
eta_statistics = [] | |
for (g, v) in h_grads: | |
if g is None: | |
res.append((g, v)) | |
else: | |
if v not in eta: | |
g_shape = g.shape_as_list() | |
assert len(g_shape) <= 2, 'Gradient has too many dimensions' | |
if len(g_shape) == 1: | |
eta[v] = self._create_eta(g_shape) | |
else: | |
eta[v] = self._create_eta([1, g_shape[1]]) | |
h_grads.append((g*eta[v], v)) | |
eta_statistics.extend(tf.nn.moments(tf.squeeze(eta[v]), axes=[0])) | |
return res, eta_statistics | |
def get_dynamic_rebar_gradient(self): | |
"""Get the dynamic rebar gradient (t, eta optimized).""" | |
tiled_pre_temperature = tf.tile([self.pre_temperature_variable], | |
[self.batch_size]) | |
temperature = tf.exp(tiled_pre_temperature) | |
hardELBO, nvil_gradient, logQHard = self._create_hard_elbo() | |
if self.hparams.quadratic: | |
gumbel_cv, extra = self._create_gumbel_control_variate_quadratic(logQHard, temperature=temperature) | |
else: | |
gumbel_cv, extra = self._create_gumbel_control_variate(logQHard, temperature=temperature) | |
f_grads = self.optimizer_class.compute_gradients(tf.reduce_mean(-nvil_gradient)) | |
eta = {} | |
h_grads, eta_statistics = self.multiply_by_eta_per_layer( | |
self.optimizer_class.compute_gradients(tf.reduce_mean(gumbel_cv)), | |
eta) | |
model_grads = U.add_grads_and_vars(f_grads, h_grads) | |
total_grads = model_grads | |
# Construct the variance objective | |
g = U.vectorize(model_grads, set_none_to_zero=True) | |
self.maintain_ema_ops.append(self.ema.apply([g])) | |
gbar = 0 #tf.stop_gradient(self.ema.average(g)) | |
variance_objective = tf.reduce_mean(tf.square(g - gbar)) | |
reinf_g_t = 0 | |
if self.hparams.quadratic: | |
for layer in xrange(self.hparams.n_layer): | |
gumbel_learning_signal, _ = extra[layer] | |
df_dt = tf.gradients(gumbel_learning_signal, tiled_pre_temperature)[0] | |
reinf_g_t_i, _ = self.multiply_by_eta_per_layer( | |
self.optimizer_class.compute_gradients(tf.reduce_mean(tf.stop_gradient(df_dt) * logQHard[layer])), | |
eta) | |
reinf_g_t += U.vectorize(reinf_g_t_i, set_none_to_zero=True) | |
reparam = tf.add_n([reparam_i for _, reparam_i in extra]) | |
else: | |
gumbel_learning_signal, reparam = extra | |
df_dt = tf.gradients(gumbel_learning_signal, tiled_pre_temperature)[0] | |
reinf_g_t, _ = self.multiply_by_eta_per_layer( | |
self.optimizer_class.compute_gradients(tf.reduce_mean(tf.stop_gradient(df_dt) * tf.add_n(logQHard))), | |
eta) | |
reinf_g_t = U.vectorize(reinf_g_t, set_none_to_zero=True) | |
reparam_g, _ = self.multiply_by_eta_per_layer( | |
self.optimizer_class.compute_gradients(tf.reduce_mean(reparam)), | |
eta) | |
reparam_g = U.vectorize(reparam_g, set_none_to_zero=True) | |
reparam_g_t = tf.gradients(tf.reduce_mean(2*tf.stop_gradient(g - gbar)*reparam_g), self.pre_temperature_variable)[0] | |
variance_objective_grad = tf.reduce_mean(2*(g - gbar)*reinf_g_t) + reparam_g_t | |
debug = { 'ELBO': hardELBO, | |
'etas': eta_statistics, | |
'variance_objective': variance_objective, | |
} | |
return total_grads, debug, variance_objective, variance_objective_grad | |
def get_rebar_gradient(self): | |
"""Get the rebar gradient.""" | |
hardELBO, nvil_gradient, logQHard = self._create_hard_elbo() | |
if self.hparams.quadratic: | |
gumbel_cv, _ = self._create_gumbel_control_variate_quadratic(logQHard) | |
else: | |
gumbel_cv, _ = self._create_gumbel_control_variate(logQHard) | |
f_grads = self.optimizer_class.compute_gradients(tf.reduce_mean(-nvil_gradient)) | |
eta = {} | |
h_grads, eta_statistics = self.multiply_by_eta_per_layer( | |
self.optimizer_class.compute_gradients(tf.reduce_mean(gumbel_cv)), | |
eta) | |
model_grads = U.add_grads_and_vars(f_grads, h_grads) | |
total_grads = model_grads | |
# Construct the variance objective | |
variance_objective = tf.reduce_mean(tf.square(U.vectorize(model_grads, set_none_to_zero=True))) | |
debug = { 'ELBO': hardELBO, | |
'etas': eta_statistics, | |
'variance_objective': variance_objective, | |
} | |
return total_grads, debug, variance_objective | |
### | |
# Create varaints | |
### | |
class SBNSimpleMuProp(SBN): | |
def _create_loss(self): | |
simple_muprop_gradient, debug = self.get_simple_muprop_gradient() | |
self.lHat = map(tf.reduce_mean, [ | |
debug['ELBO'], | |
debug['muELBO'], | |
]) | |
return debug['ELBO'], simple_muprop_gradient | |
def _create_network(self): | |
logF, loss_grads = self._create_loss() | |
self._create_train_op(loss_grads) | |
# Create IWAE lower bound for evaluation | |
self.logF = self._reshape(logF) | |
self.iwae = tf.reduce_mean(U.logSumExp(self.logF, axis=1) - | |
tf.log(tf.to_float(self.n_samples))) | |
class SBNMuProp(SBN): | |
def _create_loss(self): | |
muprop_gradient, debug = self.get_muprop_gradient() | |
self.lHat = map(tf.reduce_mean, [ | |
debug['ELBO'], | |
debug['muELBO'], | |
]) | |
return debug['ELBO'], muprop_gradient | |
def _create_network(self): | |
logF, loss_grads = self._create_loss() | |
self._create_train_op(loss_grads) | |
# Create IWAE lower bound for evaluation | |
self.logF = self._reshape(logF) | |
self.iwae = tf.reduce_mean(U.logSumExp(self.logF, axis=1) - | |
tf.log(tf.to_float(self.n_samples))) | |
class SBNNVIL(SBN): | |
def _create_loss(self): | |
nvil_gradient, debug = self.get_nvil_gradient() | |
self.lHat = map(tf.reduce_mean, [ | |
debug['ELBO'], | |
]) | |
return debug['ELBO'], nvil_gradient | |
def _create_network(self): | |
logF, loss_grads = self._create_loss() | |
self._create_train_op(loss_grads) | |
# Create IWAE lower bound for evaluation | |
self.logF = self._reshape(logF) | |
self.iwae = tf.reduce_mean(U.logSumExp(self.logF, axis=1) - | |
tf.log(tf.to_float(self.n_samples))) | |
class SBNRebar(SBN): | |
def _create_loss(self): | |
rebar_gradient, debug, variance_objective = self.get_rebar_gradient() | |
self.lHat = map(tf.reduce_mean, [ | |
debug['ELBO'], | |
]) | |
self.lHat.extend(map(tf.reduce_mean, debug['etas'])) | |
return debug['ELBO'], rebar_gradient, variance_objective | |
def _create_network(self): | |
logF, loss_grads, variance_objective = self._create_loss() | |
# Create additional updates for control variates and temperature | |
eta_grads = (self.optimizer_class.compute_gradients(variance_objective, | |
var_list=tf.get_collection('CV'))) | |
self._create_train_op(loss_grads, eta_grads) | |
# Create IWAE lower bound for evaluation | |
self.logF = self._reshape(logF) | |
self.iwae = tf.reduce_mean(U.logSumExp(self.logF, axis=1) - | |
tf.log(tf.to_float(self.n_samples))) | |
class SBNDynamicRebar(SBN): | |
def _create_loss(self): | |
rebar_gradient, debug, variance_objective, variance_objective_grad = self.get_dynamic_rebar_gradient() | |
self.lHat = map(tf.reduce_mean, [ | |
debug['ELBO'], | |
self.temperature_variable, | |
]) | |
self.lHat.extend(debug['etas']) | |
return debug['ELBO'], rebar_gradient, variance_objective, variance_objective_grad | |
def _create_network(self): | |
logF, loss_grads, variance_objective, variance_objective_grad = self._create_loss() | |
# Create additional updates for control variates and temperature | |
eta_grads = (self.optimizer_class.compute_gradients(variance_objective, | |
var_list=tf.get_collection('CV')) | |
+ [(variance_objective_grad, self.pre_temperature_variable)]) | |
self._create_train_op(loss_grads, eta_grads) | |
# Create IWAE lower bound for evaluation | |
self.logF = self._reshape(logF) | |
self.iwae = tf.reduce_mean(U.logSumExp(self.logF, axis=1) - | |
tf.log(tf.to_float(self.n_samples))) | |
class SBNTrackGradVariances(SBN): | |
"""Follow NVIL, compute gradient variances for NVIL, MuProp and REBAR.""" | |
def compute_gradient_moments(self, grads_and_vars): | |
first_moment = U.vectorize(grads_and_vars, set_none_to_zero=True) | |
second_moment = tf.square(first_moment) | |
self.maintain_ema_ops.append(self.ema.apply([first_moment, second_moment])) | |
return self.ema.average(first_moment), self.ema.average(second_moment) | |
def _create_loss(self): | |
self.losses = [ | |
('NVIL', self.get_nvil_gradient), | |
('SimpleMuProp', self.get_simple_muprop_gradient), | |
('MuProp', self.get_muprop_gradient), | |
] | |
moments = [] | |
for k, v in self.losses: | |
print(k) | |
gradient, debug = v() | |
if k == 'SimpleMuProp': | |
ELBO = debug['ELBO'] | |
gradient_to_follow = gradient | |
moments.append(self.compute_gradient_moments( | |
gradient)) | |
self.losses.append(('DynamicREBAR', self.get_dynamic_rebar_gradient)) | |
dynamic_rebar_gradient, _, variance_objective, variance_objective_grad = self.get_dynamic_rebar_gradient() | |
moments.append(self.compute_gradient_moments(dynamic_rebar_gradient)) | |
self.losses.append(('REBAR', self.get_rebar_gradient)) | |
rebar_gradient, _, variance_objective2 = self.get_rebar_gradient() | |
moments.append(self.compute_gradient_moments(rebar_gradient)) | |
mu = tf.reduce_mean(tf.stack([f for f, _ in moments]), axis=0) | |
self.grad_variances = [] | |
deviations = [] | |
for f, s in moments: | |
self.grad_variances.append(tf.reduce_mean(s - tf.square(mu))) | |
deviations.append(tf.reduce_mean(tf.square(f - mu))) | |
self.lHat = map(tf.reduce_mean, [ | |
ELBO, | |
self.temperature_variable, | |
variance_objective_grad, | |
variance_objective_grad*variance_objective_grad, | |
]) | |
self.lHat.extend(deviations) | |
self.lHat.append(tf.log(tf.reduce_mean(mu*mu))) | |
# self.lHat.extend(map(tf.log, grad_variances)) | |
return ELBO, gradient_to_follow, variance_objective + variance_objective2, variance_objective_grad | |
def _create_network(self): | |
logF, loss_grads, variance_objective, variance_objective_grad = self._create_loss() | |
eta_grads = (self.optimizer_class.compute_gradients(variance_objective, | |
var_list=tf.get_collection('CV')) | |
+ [(variance_objective_grad, self.pre_temperature_variable)]) | |
self._create_train_op(loss_grads, eta_grads) | |
# Create IWAE lower bound for evaluation | |
self.logF = self._reshape(logF) | |
self.iwae = tf.reduce_mean(U.logSumExp(self.logF, axis=1) - | |
tf.log(tf.to_float(self.n_samples))) | |
class SBNGumbel(SBN): | |
def _random_sample_soft(self, log_alpha, u, layer, temperature=None): | |
"""Returns sampled random variables parameterized by log_alpha.""" | |
if temperature is None: | |
temperature = self.hparams.temperature | |
# Sample random variable underlying softmax/argmax | |
x = log_alpha + U.safe_log_prob(u) - U.safe_log_prob(1 - u) | |
x /= temperature | |
if self.hparams.muprop_relaxation: | |
x += temperature/(temperature + 1)*log_alpha | |
y = tf.nn.sigmoid(x) | |
return { | |
'preactivation': x, | |
'activation': y, | |
'log_param': log_alpha | |
} | |
def _create_loss(self): | |
# Hard loss | |
logQHard, hardSamples = self._recognition_network() | |
hardELBO, _ = self._generator_network(hardSamples, logQHard) | |
logQ, softSamples = self._recognition_network(sampler=self._random_sample_soft) | |
softELBO, _ = self._generator_network(softSamples, logQ) | |
self.optimizerLoss = -softELBO | |
self.lHat = map(tf.reduce_mean, [ | |
hardELBO, | |
softELBO, | |
]) | |
return hardELBO | |
default_hparams = tf.contrib.training.HParams(model='SBNGumbel', | |
n_hidden=200, | |
n_input=784, | |
n_layer=1, | |
nonlinear=False, | |
learning_rate=0.001, | |
temperature=0.5, | |
n_samples=1, | |
batch_size=24, | |
trial=1, | |
muprop_relaxation=True, | |
dynamic_b=False, # dynamic binarization | |
quadratic=True, | |
beta2=0.99999, | |
task='sbn', | |
) | |