Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Objectives for full-episode. | |
Implementations of UREX & REINFORCE. Note that these implementations | |
use a non-parametric baseline to reduce variance. Thus, multiple | |
samples with the same seed must be taken from the environment. | |
""" | |
import tensorflow as tf | |
import objective | |
class Reinforce(objective.Objective): | |
def __init__(self, learning_rate, clip_norm, num_samples, | |
tau=0.1, bonus_weight=1.0): | |
super(Reinforce, self).__init__(learning_rate, clip_norm=clip_norm) | |
self.num_samples = num_samples | |
assert self.num_samples > 1 | |
self.tau = tau | |
self.bonus_weight = bonus_weight | |
self.eps_lambda = 0.0 | |
def get_bonus(self, total_rewards, total_log_probs): | |
"""Exploration bonus.""" | |
return -self.tau * total_log_probs | |
def get(self, rewards, pads, values, final_values, | |
log_probs, prev_log_probs, target_log_probs, | |
entropies, logits, | |
target_values, final_target_values): | |
seq_length = tf.shape(rewards)[0] | |
not_pad = tf.reshape(1 - pads, [seq_length, -1, self.num_samples]) | |
rewards = not_pad * tf.reshape(rewards, [seq_length, -1, self.num_samples]) | |
log_probs = not_pad * tf.reshape(sum(log_probs), [seq_length, -1, self.num_samples]) | |
total_rewards = tf.reduce_sum(rewards, 0) | |
total_log_probs = tf.reduce_sum(log_probs, 0) | |
rewards_and_bonus = (total_rewards + | |
self.bonus_weight * | |
self.get_bonus(total_rewards, total_log_probs)) | |
baseline = tf.reduce_mean(rewards_and_bonus, 1, keep_dims=True) | |
loss = -tf.stop_gradient(rewards_and_bonus - baseline) * total_log_probs | |
loss = tf.reduce_mean(loss) | |
raw_loss = loss # TODO | |
gradient_ops = self.training_ops( | |
loss, learning_rate=self.learning_rate) | |
tf.summary.histogram('log_probs', total_log_probs) | |
tf.summary.histogram('rewards', total_rewards) | |
tf.summary.scalar('avg_rewards', | |
tf.reduce_mean(total_rewards)) | |
tf.summary.scalar('loss', loss) | |
return loss, raw_loss, baseline, gradient_ops, tf.summary.merge_all() | |
class UREX(Reinforce): | |
def get_bonus(self, total_rewards, total_log_probs): | |
"""Exploration bonus.""" | |
discrepancy = total_rewards / self.tau - total_log_probs | |
normalized_d = self.num_samples * tf.nn.softmax(discrepancy) | |
return self.tau * normalized_d | |