Spaces:
Running
Running
# Copyright 2016 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Author: aneelakantan (Arvind Neelakantan) | |
""" | |
from __future__ import print_function | |
import numpy as np | |
import tensorflow as tf | |
import nn_utils | |
class Graph(): | |
def __init__(self, utility, batch_size, max_passes, mode="train"): | |
self.utility = utility | |
self.data_type = self.utility.tf_data_type[self.utility.FLAGS.data_type] | |
self.max_elements = self.utility.FLAGS.max_elements | |
max_elements = self.utility.FLAGS.max_elements | |
self.num_cols = self.utility.FLAGS.max_number_cols | |
self.num_word_cols = self.utility.FLAGS.max_word_cols | |
self.question_length = self.utility.FLAGS.question_length | |
self.batch_size = batch_size | |
self.max_passes = max_passes | |
self.mode = mode | |
self.embedding_dims = self.utility.FLAGS.embedding_dims | |
#input question and a mask | |
self.batch_question = tf.placeholder(tf.int32, | |
[batch_size, self.question_length]) | |
self.batch_question_attention_mask = tf.placeholder( | |
self.data_type, [batch_size, self.question_length]) | |
#ground truth scalar answer and lookup answer | |
self.batch_answer = tf.placeholder(self.data_type, [batch_size]) | |
self.batch_print_answer = tf.placeholder( | |
self.data_type, | |
[batch_size, self.num_cols + self.num_word_cols, max_elements]) | |
#number columns and its processed version | |
self.batch_number_column = tf.placeholder( | |
self.data_type, [batch_size, self.num_cols, max_elements | |
]) #columns with numeric entries | |
self.batch_processed_number_column = tf.placeholder( | |
self.data_type, [batch_size, self.num_cols, max_elements]) | |
self.batch_processed_sorted_index_number_column = tf.placeholder( | |
tf.int32, [batch_size, self.num_cols, max_elements]) | |
#word columns and its processed version | |
self.batch_processed_word_column = tf.placeholder( | |
self.data_type, [batch_size, self.num_word_cols, max_elements]) | |
self.batch_processed_sorted_index_word_column = tf.placeholder( | |
tf.int32, [batch_size, self.num_word_cols, max_elements]) | |
self.batch_word_column_entry_mask = tf.placeholder( | |
tf.int32, [batch_size, self.num_word_cols, max_elements]) | |
#names of word and number columns along with their mask | |
self.batch_word_column_names = tf.placeholder( | |
tf.int32, | |
[batch_size, self.num_word_cols, self.utility.FLAGS.max_entry_length]) | |
self.batch_word_column_mask = tf.placeholder( | |
self.data_type, [batch_size, self.num_word_cols]) | |
self.batch_number_column_names = tf.placeholder( | |
tf.int32, | |
[batch_size, self.num_cols, self.utility.FLAGS.max_entry_length]) | |
self.batch_number_column_mask = tf.placeholder(self.data_type, | |
[batch_size, self.num_cols]) | |
#exact match and group by max operation | |
self.batch_exact_match = tf.placeholder( | |
self.data_type, | |
[batch_size, self.num_cols + self.num_word_cols, max_elements]) | |
self.batch_column_exact_match = tf.placeholder( | |
self.data_type, [batch_size, self.num_cols + self.num_word_cols]) | |
self.batch_group_by_max = tf.placeholder( | |
self.data_type, | |
[batch_size, self.num_cols + self.num_word_cols, max_elements]) | |
#numbers in the question along with their position. This is used to compute arguments to the comparison operations | |
self.batch_question_number = tf.placeholder(self.data_type, [batch_size, 1]) | |
self.batch_question_number_one = tf.placeholder(self.data_type, | |
[batch_size, 1]) | |
self.batch_question_number_mask = tf.placeholder( | |
self.data_type, [batch_size, max_elements]) | |
self.batch_question_number_one_mask = tf.placeholder(self.data_type, | |
[batch_size, 1]) | |
self.batch_ordinal_question = tf.placeholder( | |
self.data_type, [batch_size, self.question_length]) | |
self.batch_ordinal_question_one = tf.placeholder( | |
self.data_type, [batch_size, self.question_length]) | |
def LSTM_question_embedding(self, sentence, sentence_length): | |
#LSTM processes the input question | |
lstm_params = "question_lstm" | |
hidden_vectors = [] | |
sentence = self.batch_question | |
question_hidden = tf.zeros( | |
[self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type) | |
question_c_hidden = tf.zeros( | |
[self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type) | |
if (self.utility.FLAGS.rnn_dropout > 0.0): | |
if (self.mode == "train"): | |
rnn_dropout_mask = tf.cast( | |
tf.random_uniform( | |
tf.shape(question_hidden), minval=0.0, maxval=1.0) < | |
self.utility.FLAGS.rnn_dropout, | |
self.data_type) / self.utility.FLAGS.rnn_dropout | |
else: | |
rnn_dropout_mask = tf.ones_like(question_hidden) | |
for question_iterator in range(self.question_length): | |
curr_word = sentence[:, question_iterator] | |
question_vector = nn_utils.apply_dropout( | |
nn_utils.get_embedding(curr_word, self.utility, self.params), | |
self.utility.FLAGS.dropout, self.mode) | |
question_hidden, question_c_hidden = nn_utils.LSTMCell( | |
question_vector, question_hidden, question_c_hidden, lstm_params, | |
self.params) | |
if (self.utility.FLAGS.rnn_dropout > 0.0): | |
question_hidden = question_hidden * rnn_dropout_mask | |
hidden_vectors.append(tf.expand_dims(question_hidden, 0)) | |
hidden_vectors = tf.concat(axis=0, values=hidden_vectors) | |
return question_hidden, hidden_vectors | |
def history_recurrent_step(self, curr_hprev, hprev): | |
#A single RNN step for controller or history RNN | |
return tf.tanh( | |
tf.matmul( | |
tf.concat(axis=1, values=[hprev, curr_hprev]), self.params[ | |
"history_recurrent"])) + self.params["history_recurrent_bias"] | |
def question_number_softmax(self, hidden_vectors): | |
#Attention on quetsion to decide the question number to passed to comparison ops | |
def compute_ans(op_embedding, comparison): | |
op_embedding = tf.expand_dims(op_embedding, 0) | |
#dot product of operation embedding with hidden state to the left of the number occurrence | |
first = tf.transpose( | |
tf.matmul(op_embedding, | |
tf.transpose( | |
tf.reduce_sum(hidden_vectors * tf.tile( | |
tf.expand_dims( | |
tf.transpose(self.batch_ordinal_question), 2), | |
[1, 1, self.utility.FLAGS.embedding_dims]), 0)))) | |
second = self.batch_question_number_one_mask + tf.transpose( | |
tf.matmul(op_embedding, | |
tf.transpose( | |
tf.reduce_sum(hidden_vectors * tf.tile( | |
tf.expand_dims( | |
tf.transpose(self.batch_ordinal_question_one), 2 | |
), [1, 1, self.utility.FLAGS.embedding_dims]), 0)))) | |
question_number_softmax = tf.nn.softmax(tf.concat(axis=1, values=[first, second])) | |
if (self.mode == "test"): | |
cond = tf.equal(question_number_softmax, | |
tf.reshape( | |
tf.reduce_max(question_number_softmax, 1), | |
[self.batch_size, 1])) | |
question_number_softmax = tf.where( | |
cond, | |
tf.fill(tf.shape(question_number_softmax), 1.0), | |
tf.fill(tf.shape(question_number_softmax), 0.0)) | |
question_number_softmax = tf.cast(question_number_softmax, | |
self.data_type) | |
ans = tf.reshape( | |
tf.reduce_sum(question_number_softmax * tf.concat( | |
axis=1, values=[self.batch_question_number, self.batch_question_number_one]), | |
1), [self.batch_size, 1]) | |
return ans | |
def compute_op_position(op_name): | |
for i in range(len(self.utility.operations_set)): | |
if (op_name == self.utility.operations_set[i]): | |
return i | |
def compute_question_number(op_name): | |
op_embedding = tf.nn.embedding_lookup(self.params_unit, | |
compute_op_position(op_name)) | |
return compute_ans(op_embedding, op_name) | |
curr_greater_question_number = compute_question_number("greater") | |
curr_lesser_question_number = compute_question_number("lesser") | |
curr_geq_question_number = compute_question_number("geq") | |
curr_leq_question_number = compute_question_number("leq") | |
return curr_greater_question_number, curr_lesser_question_number, curr_geq_question_number, curr_leq_question_number | |
def perform_attention(self, context_vector, hidden_vectors, length, mask): | |
#Performs attention on hiddent_vectors using context vector | |
context_vector = tf.tile( | |
tf.expand_dims(context_vector, 0), [length, 1, 1]) #time * bs * d | |
attention_softmax = tf.nn.softmax( | |
tf.transpose(tf.reduce_sum(context_vector * hidden_vectors, 2)) + | |
mask) #batch_size * time | |
attention_softmax = tf.tile( | |
tf.expand_dims(tf.transpose(attention_softmax), 2), | |
[1, 1, self.embedding_dims]) | |
ans_vector = tf.reduce_sum(attention_softmax * hidden_vectors, 0) | |
return ans_vector | |
#computes embeddings for column names using parameters of question module | |
def get_column_hidden_vectors(self): | |
#vector representations for the column names | |
self.column_hidden_vectors = tf.reduce_sum( | |
nn_utils.get_embedding(self.batch_number_column_names, self.utility, | |
self.params), 2) | |
self.word_column_hidden_vectors = tf.reduce_sum( | |
nn_utils.get_embedding(self.batch_word_column_names, self.utility, | |
self.params), 2) | |
def create_summary_embeddings(self): | |
#embeddings for each text entry in the table using parameters of the question module | |
self.summary_text_entry_embeddings = tf.reduce_sum( | |
tf.expand_dims(self.batch_exact_match, 3) * tf.expand_dims( | |
tf.expand_dims( | |
tf.expand_dims( | |
nn_utils.get_embedding(self.utility.entry_match_token_id, | |
self.utility, self.params), 0), 1), | |
2), 2) | |
def compute_column_softmax(self, column_controller_vector, time_step): | |
#compute softmax over all the columns using column controller vector | |
column_controller_vector = tf.tile( | |
tf.expand_dims(column_controller_vector, 1), | |
[1, self.num_cols + self.num_word_cols, 1]) #max_cols * bs * d | |
column_controller_vector = nn_utils.apply_dropout( | |
column_controller_vector, self.utility.FLAGS.dropout, self.mode) | |
self.full_column_hidden_vectors = tf.concat( | |
axis=1, values=[self.column_hidden_vectors, self.word_column_hidden_vectors]) | |
self.full_column_hidden_vectors += self.summary_text_entry_embeddings | |
self.full_column_hidden_vectors = nn_utils.apply_dropout( | |
self.full_column_hidden_vectors, self.utility.FLAGS.dropout, self.mode) | |
column_logits = tf.reduce_sum( | |
column_controller_vector * self.full_column_hidden_vectors, 2) + ( | |
self.params["word_match_feature_column_name"] * | |
self.batch_column_exact_match) + self.full_column_mask | |
column_softmax = tf.nn.softmax(column_logits) #batch_size * max_cols | |
return column_softmax | |
def compute_first_or_last(self, select, first=True): | |
#perform first ot last operation on row select with probabilistic row selection | |
answer = tf.zeros_like(select) | |
running_sum = tf.zeros([self.batch_size, 1], self.data_type) | |
for i in range(self.max_elements): | |
if (first): | |
current = tf.slice(select, [0, i], [self.batch_size, 1]) | |
else: | |
current = tf.slice(select, [0, self.max_elements - 1 - i], | |
[self.batch_size, 1]) | |
curr_prob = current * (1 - running_sum) | |
curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type) | |
running_sum += curr_prob | |
temp_ans = [] | |
curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0) | |
for i_ans in range(self.max_elements): | |
if (not (first) and i_ans == self.max_elements - 1 - i): | |
temp_ans.append(curr_prob) | |
elif (first and i_ans == i): | |
temp_ans.append(curr_prob) | |
else: | |
temp_ans.append(tf.zeros_like(curr_prob)) | |
temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans)) | |
answer += temp_ans | |
return answer | |
def make_hard_softmax(self, softmax): | |
#converts soft selection to hard selection. used at test time | |
cond = tf.equal( | |
softmax, tf.reshape(tf.reduce_max(softmax, 1), [self.batch_size, 1])) | |
softmax = tf.where( | |
cond, tf.fill(tf.shape(softmax), 1.0), tf.fill(tf.shape(softmax), 0.0)) | |
softmax = tf.cast(softmax, self.data_type) | |
return softmax | |
def compute_max_or_min(self, select, maxi=True): | |
#computes the argmax and argmin of a column with probabilistic row selection | |
answer = tf.zeros([ | |
self.batch_size, self.num_cols + self.num_word_cols, self.max_elements | |
], self.data_type) | |
sum_prob = tf.zeros([self.batch_size, self.num_cols + self.num_word_cols], | |
self.data_type) | |
for j in range(self.max_elements): | |
if (maxi): | |
curr_pos = j | |
else: | |
curr_pos = self.max_elements - 1 - j | |
select_index = tf.slice(self.full_processed_sorted_index_column, | |
[0, 0, curr_pos], [self.batch_size, -1, 1]) | |
select_mask = tf.equal( | |
tf.tile( | |
tf.expand_dims( | |
tf.tile( | |
tf.expand_dims(tf.range(self.max_elements), 0), | |
[self.batch_size, 1]), 1), | |
[1, self.num_cols + self.num_word_cols, 1]), select_index) | |
curr_prob = tf.expand_dims(select, 1) * tf.cast( | |
select_mask, self.data_type) * self.select_bad_number_mask | |
curr_prob = curr_prob * tf.expand_dims((1 - sum_prob), 2) | |
curr_prob = curr_prob * tf.expand_dims( | |
tf.cast((1 - sum_prob) > 0.0, self.data_type), 2) | |
answer = tf.where(select_mask, curr_prob, answer) | |
sum_prob += tf.reduce_sum(curr_prob, 2) | |
return answer | |
def perform_operations(self, softmax, full_column_softmax, select, | |
prev_select_1, curr_pass): | |
#performs all the 15 operations. computes scalar output, lookup answer and row selector | |
column_softmax = tf.slice(full_column_softmax, [0, 0], | |
[self.batch_size, self.num_cols]) | |
word_column_softmax = tf.slice(full_column_softmax, [0, self.num_cols], | |
[self.batch_size, self.num_word_cols]) | |
init_max = self.compute_max_or_min(select, maxi=True) | |
init_min = self.compute_max_or_min(select, maxi=False) | |
#operations that are column independent | |
count = tf.reshape(tf.reduce_sum(select, 1), [self.batch_size, 1]) | |
select_full_column_softmax = tf.tile( | |
tf.expand_dims(full_column_softmax, 2), | |
[1, 1, self.max_elements | |
]) #BS * (max_cols + max_word_cols) * max_elements | |
select_word_column_softmax = tf.tile( | |
tf.expand_dims(word_column_softmax, 2), | |
[1, 1, self.max_elements]) #BS * max_word_cols * max_elements | |
select_greater = tf.reduce_sum( | |
self.init_select_greater * select_full_column_softmax, | |
1) * self.batch_question_number_mask #BS * max_elements | |
select_lesser = tf.reduce_sum( | |
self.init_select_lesser * select_full_column_softmax, | |
1) * self.batch_question_number_mask #BS * max_elements | |
select_geq = tf.reduce_sum( | |
self.init_select_geq * select_full_column_softmax, | |
1) * self.batch_question_number_mask #BS * max_elements | |
select_leq = tf.reduce_sum( | |
self.init_select_leq * select_full_column_softmax, | |
1) * self.batch_question_number_mask #BS * max_elements | |
select_max = tf.reduce_sum(init_max * select_full_column_softmax, | |
1) #BS * max_elements | |
select_min = tf.reduce_sum(init_min * select_full_column_softmax, | |
1) #BS * max_elements | |
select_prev = tf.concat(axis=1, values=[ | |
tf.slice(select, [0, 1], [self.batch_size, self.max_elements - 1]), | |
tf.cast(tf.zeros([self.batch_size, 1]), self.data_type) | |
]) | |
select_next = tf.concat(axis=1, values=[ | |
tf.cast(tf.zeros([self.batch_size, 1]), self.data_type), tf.slice( | |
select, [0, 0], [self.batch_size, self.max_elements - 1]) | |
]) | |
select_last_rs = self.compute_first_or_last(select, False) | |
select_first_rs = self.compute_first_or_last(select, True) | |
select_word_match = tf.reduce_sum(self.batch_exact_match * | |
select_full_column_softmax, 1) | |
select_group_by_max = tf.reduce_sum(self.batch_group_by_max * | |
select_full_column_softmax, 1) | |
length_content = 1 | |
length_select = 13 | |
length_print = 1 | |
values = tf.concat(axis=1, values=[count]) | |
softmax_content = tf.slice(softmax, [0, 0], | |
[self.batch_size, length_content]) | |
#compute scalar output | |
output = tf.reduce_sum(tf.multiply(softmax_content, values), 1) | |
#compute lookup answer | |
softmax_print = tf.slice(softmax, [0, length_content + length_select], | |
[self.batch_size, length_print]) | |
curr_print = select_full_column_softmax * tf.tile( | |
tf.expand_dims(select, 1), | |
[1, self.num_cols + self.num_word_cols, 1 | |
]) #BS * max_cols * max_elements (conisders only column) | |
self.batch_lookup_answer = curr_print * tf.tile( | |
tf.expand_dims(softmax_print, 2), | |
[1, self.num_cols + self.num_word_cols, self.max_elements | |
]) #BS * max_cols * max_elements | |
self.batch_lookup_answer = self.batch_lookup_answer * self.select_full_mask | |
#compute row select | |
softmax_select = tf.slice(softmax, [0, length_content], | |
[self.batch_size, length_select]) | |
select_lists = [ | |
tf.expand_dims(select_prev, 1), tf.expand_dims(select_next, 1), | |
tf.expand_dims(select_first_rs, 1), tf.expand_dims(select_last_rs, 1), | |
tf.expand_dims(select_group_by_max, 1), | |
tf.expand_dims(select_greater, 1), tf.expand_dims(select_lesser, 1), | |
tf.expand_dims(select_geq, 1), tf.expand_dims(select_leq, 1), | |
tf.expand_dims(select_max, 1), tf.expand_dims(select_min, 1), | |
tf.expand_dims(select_word_match, 1), | |
tf.expand_dims(self.reset_select, 1) | |
] | |
select = tf.reduce_sum( | |
tf.tile(tf.expand_dims(softmax_select, 2), [1, 1, self.max_elements]) * | |
tf.concat(axis=1, values=select_lists), 1) | |
select = select * self.select_whole_mask | |
return output, select | |
def one_pass(self, select, question_embedding, hidden_vectors, hprev, | |
prev_select_1, curr_pass): | |
#Performs one timestep which involves selecting an operation and a column | |
attention_vector = self.perform_attention( | |
hprev, hidden_vectors, self.question_length, | |
self.batch_question_attention_mask) #batch_size * embedding_dims | |
controller_vector = tf.nn.relu( | |
tf.matmul(hprev, self.params["controller_prev"]) + tf.matmul( | |
tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[ | |
"controller"])) | |
column_controller_vector = tf.nn.relu( | |
tf.matmul(hprev, self.params["column_controller_prev"]) + tf.matmul( | |
tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[ | |
"column_controller"])) | |
controller_vector = nn_utils.apply_dropout( | |
controller_vector, self.utility.FLAGS.dropout, self.mode) | |
self.operation_logits = tf.matmul(controller_vector, | |
tf.transpose(self.params_unit)) | |
softmax = tf.nn.softmax(self.operation_logits) | |
soft_softmax = softmax | |
#compute column softmax: bs * max_columns | |
weighted_op_representation = tf.transpose( | |
tf.matmul(tf.transpose(self.params_unit), tf.transpose(softmax))) | |
column_controller_vector = tf.nn.relu( | |
tf.matmul( | |
tf.concat(axis=1, values=[ | |
column_controller_vector, weighted_op_representation | |
]), self.params["break_conditional"])) | |
full_column_softmax = self.compute_column_softmax(column_controller_vector, | |
curr_pass) | |
soft_column_softmax = full_column_softmax | |
if (self.mode == "test"): | |
full_column_softmax = self.make_hard_softmax(full_column_softmax) | |
softmax = self.make_hard_softmax(softmax) | |
output, select = self.perform_operations(softmax, full_column_softmax, | |
select, prev_select_1, curr_pass) | |
return output, select, softmax, soft_softmax, full_column_softmax, soft_column_softmax | |
def compute_lookup_error(self, val): | |
#computes lookup error. | |
cond = tf.equal(self.batch_print_answer, val) | |
inter = tf.where( | |
cond, self.init_print_error, | |
tf.tile( | |
tf.reshape(tf.constant(1e10, self.data_type), [1, 1, 1]), [ | |
self.batch_size, self.utility.FLAGS.max_word_cols + | |
self.utility.FLAGS.max_number_cols, | |
self.utility.FLAGS.max_elements | |
])) | |
return tf.reduce_min(tf.reduce_min(inter, 1), 1) * tf.cast( | |
tf.greater( | |
tf.reduce_sum(tf.reduce_sum(tf.cast(cond, self.data_type), 1), 1), | |
0.0), self.data_type) | |
def soft_min(self, x, y): | |
return tf.maximum(-1.0 * (1 / ( | |
self.utility.FLAGS.soft_min_value + 0.0)) * tf.log( | |
tf.exp(-self.utility.FLAGS.soft_min_value * x) + tf.exp( | |
-self.utility.FLAGS.soft_min_value * y)), tf.zeros_like(x)) | |
def error_computation(self): | |
#computes the error of each example in a batch | |
math_error = 0.5 * tf.square(tf.subtract(self.scalar_output, self.batch_answer)) | |
#scale math error | |
math_error = math_error / self.rows | |
math_error = tf.minimum(math_error, self.utility.FLAGS.max_math_error * | |
tf.ones(tf.shape(math_error), self.data_type)) | |
self.init_print_error = tf.where( | |
self.batch_gold_select, -1 * tf.log(self.batch_lookup_answer + 1e-300 + | |
self.invert_select_full_mask), -1 * | |
tf.log(1 - self.batch_lookup_answer)) * self.select_full_mask | |
print_error_1 = self.init_print_error * tf.cast( | |
tf.equal(self.batch_print_answer, 0.0), self.data_type) | |
print_error = tf.reduce_sum(tf.reduce_sum((print_error_1), 1), 1) | |
for val in range(1, 58): | |
print_error += self.compute_lookup_error(val + 0.0) | |
print_error = print_error * self.utility.FLAGS.print_cost / self.num_entries | |
if (self.mode == "train"): | |
error = tf.where( | |
tf.logical_and( | |
tf.not_equal(self.batch_answer, 0.0), | |
tf.not_equal( | |
tf.reduce_sum(tf.reduce_sum(self.batch_print_answer, 1), 1), | |
0.0)), | |
self.soft_min(math_error, print_error), | |
tf.where( | |
tf.not_equal(self.batch_answer, 0.0), math_error, print_error)) | |
else: | |
error = tf.where( | |
tf.logical_and( | |
tf.equal(self.scalar_output, 0.0), | |
tf.equal( | |
tf.reduce_sum(tf.reduce_sum(self.batch_lookup_answer, 1), 1), | |
0.0)), | |
tf.ones_like(math_error), | |
tf.where( | |
tf.equal(self.scalar_output, 0.0), print_error, math_error)) | |
return error | |
def batch_process(self): | |
#Computes loss and fraction of correct examples in a batch. | |
self.params_unit = nn_utils.apply_dropout( | |
self.params["unit"], self.utility.FLAGS.dropout, self.mode) | |
batch_size = self.batch_size | |
max_passes = self.max_passes | |
num_timesteps = 1 | |
max_elements = self.max_elements | |
select = tf.cast( | |
tf.fill([self.batch_size, max_elements], 1.0), self.data_type) | |
hprev = tf.cast( | |
tf.fill([self.batch_size, self.embedding_dims], 0.0), | |
self.data_type) #running sum of the hidden states of the model | |
output = tf.cast(tf.fill([self.batch_size, 1], 0.0), | |
self.data_type) #output of the model | |
correct = tf.cast( | |
tf.fill([1], 0.0), self.data_type | |
) #to compute accuracy, returns number of correct examples for this batch | |
total_error = 0.0 | |
prev_select_1 = tf.zeros_like(select) | |
self.create_summary_embeddings() | |
self.get_column_hidden_vectors() | |
#get question embedding | |
question_embedding, hidden_vectors = self.LSTM_question_embedding( | |
self.batch_question, self.question_length) | |
#compute arguments for comparison operation | |
greater_question_number, lesser_question_number, geq_question_number, leq_question_number = self.question_number_softmax( | |
hidden_vectors) | |
self.init_select_greater = tf.cast( | |
tf.greater(self.full_processed_column, | |
tf.expand_dims(greater_question_number, 2)), self. | |
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements | |
self.init_select_lesser = tf.cast( | |
tf.less(self.full_processed_column, | |
tf.expand_dims(lesser_question_number, 2)), self. | |
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements | |
self.init_select_geq = tf.cast( | |
tf.greater_equal(self.full_processed_column, | |
tf.expand_dims(geq_question_number, 2)), self. | |
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements | |
self.init_select_leq = tf.cast( | |
tf.less_equal(self.full_processed_column, | |
tf.expand_dims(leq_question_number, 2)), self. | |
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements | |
self.init_select_word_match = 0 | |
if (self.utility.FLAGS.rnn_dropout > 0.0): | |
if (self.mode == "train"): | |
history_rnn_dropout_mask = tf.cast( | |
tf.random_uniform( | |
tf.shape(hprev), minval=0.0, maxval=1.0) < | |
self.utility.FLAGS.rnn_dropout, | |
self.data_type) / self.utility.FLAGS.rnn_dropout | |
else: | |
history_rnn_dropout_mask = tf.ones_like(hprev) | |
select = select * self.select_whole_mask | |
self.batch_log_prob = tf.zeros([self.batch_size], dtype=self.data_type) | |
#Perform max_passes and at each pass select operation and column | |
for curr_pass in range(max_passes): | |
print("step: ", curr_pass) | |
output, select, softmax, soft_softmax, column_softmax, soft_column_softmax = self.one_pass( | |
select, question_embedding, hidden_vectors, hprev, prev_select_1, | |
curr_pass) | |
prev_select_1 = select | |
#compute input to history RNN | |
input_op = tf.transpose( | |
tf.matmul( | |
tf.transpose(self.params_unit), tf.transpose( | |
soft_softmax))) #weighted average of emebdding of operations | |
input_col = tf.reduce_sum( | |
tf.expand_dims(soft_column_softmax, 2) * | |
self.full_column_hidden_vectors, 1) | |
history_input = tf.concat(axis=1, values=[input_op, input_col]) | |
history_input = nn_utils.apply_dropout( | |
history_input, self.utility.FLAGS.dropout, self.mode) | |
hprev = self.history_recurrent_step(history_input, hprev) | |
if (self.utility.FLAGS.rnn_dropout > 0.0): | |
hprev = hprev * history_rnn_dropout_mask | |
self.scalar_output = output | |
error = self.error_computation() | |
cond = tf.less(error, 0.0001, name="cond") | |
correct_add = tf.where( | |
cond, tf.fill(tf.shape(cond), 1.0), tf.fill(tf.shape(cond), 0.0)) | |
correct = tf.reduce_sum(correct_add) | |
error = error / batch_size | |
total_error = tf.reduce_sum(error) | |
total_correct = correct / batch_size | |
return total_error, total_correct | |
def compute_error(self): | |
#Sets mask variables and performs batch processing | |
self.batch_gold_select = self.batch_print_answer > 0.0 | |
self.full_column_mask = tf.concat( | |
axis=1, values=[self.batch_number_column_mask, self.batch_word_column_mask]) | |
self.full_processed_column = tf.concat( | |
axis=1, | |
values=[self.batch_processed_number_column, self.batch_processed_word_column]) | |
self.full_processed_sorted_index_column = tf.concat(axis=1, values=[ | |
self.batch_processed_sorted_index_number_column, | |
self.batch_processed_sorted_index_word_column | |
]) | |
self.select_bad_number_mask = tf.cast( | |
tf.logical_and( | |
tf.not_equal(self.full_processed_column, | |
self.utility.FLAGS.pad_int), | |
tf.not_equal(self.full_processed_column, | |
self.utility.FLAGS.bad_number_pre_process)), | |
self.data_type) | |
self.select_mask = tf.cast( | |
tf.logical_not( | |
tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int)), | |
self.data_type) | |
self.select_word_mask = tf.cast( | |
tf.logical_not( | |
tf.equal(self.batch_word_column_entry_mask, | |
self.utility.dummy_token_id)), self.data_type) | |
self.select_full_mask = tf.concat( | |
axis=1, values=[self.select_mask, self.select_word_mask]) | |
self.select_whole_mask = tf.maximum( | |
tf.reshape( | |
tf.slice(self.select_mask, [0, 0, 0], | |
[self.batch_size, 1, self.max_elements]), | |
[self.batch_size, self.max_elements]), | |
tf.reshape( | |
tf.slice(self.select_word_mask, [0, 0, 0], | |
[self.batch_size, 1, self.max_elements]), | |
[self.batch_size, self.max_elements])) | |
self.invert_select_full_mask = tf.cast( | |
tf.concat(axis=1, values=[ | |
tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int), | |
tf.equal(self.batch_word_column_entry_mask, | |
self.utility.dummy_token_id) | |
]), self.data_type) | |
self.batch_lookup_answer = tf.zeros(tf.shape(self.batch_gold_select)) | |
self.reset_select = self.select_whole_mask | |
self.rows = tf.reduce_sum(self.select_whole_mask, 1) | |
self.num_entries = tf.reshape( | |
tf.reduce_sum(tf.reduce_sum(self.select_full_mask, 1), 1), | |
[self.batch_size]) | |
self.final_error, self.final_correct = self.batch_process() | |
return self.final_error | |
def create_graph(self, params, global_step): | |
#Creates the graph to compute error, gradient computation and updates parameters | |
self.params = params | |
batch_size = self.batch_size | |
learning_rate = tf.cast(self.utility.FLAGS.learning_rate, self.data_type) | |
self.total_cost = self.compute_error() | |
optimize_params = self.params.values() | |
optimize_names = self.params.keys() | |
print("optimize params ", optimize_names) | |
if (self.utility.FLAGS.l2_regularizer > 0.0): | |
reg_cost = 0.0 | |
for ind_param in self.params.keys(): | |
reg_cost += tf.nn.l2_loss(self.params[ind_param]) | |
self.total_cost += self.utility.FLAGS.l2_regularizer * reg_cost | |
grads = tf.gradients(self.total_cost, optimize_params, name="gradients") | |
grad_norm = 0.0 | |
for p, name in zip(grads, optimize_names): | |
print("grads: ", p, name) | |
if isinstance(p, tf.IndexedSlices): | |
grad_norm += tf.reduce_sum(p.values * p.values) | |
elif not (p == None): | |
grad_norm += tf.reduce_sum(p * p) | |
grad_norm = tf.sqrt(grad_norm) | |
max_grad_norm = np.float32(self.utility.FLAGS.clip_gradients).astype( | |
self.utility.np_data_type[self.utility.FLAGS.data_type]) | |
grad_scale = tf.minimum( | |
tf.cast(1.0, self.data_type), max_grad_norm / grad_norm) | |
clipped_grads = list() | |
for p in grads: | |
if isinstance(p, tf.IndexedSlices): | |
tmp = p.values * grad_scale | |
clipped_grads.append(tf.IndexedSlices(tmp, p.indices)) | |
elif not (p == None): | |
clipped_grads.append(p * grad_scale) | |
else: | |
clipped_grads.append(p) | |
grads = clipped_grads | |
self.global_step = global_step | |
params_list = self.params.values() | |
params_list.append(self.global_step) | |
adam = tf.train.AdamOptimizer( | |
learning_rate, | |
epsilon=tf.cast(self.utility.FLAGS.eps, self.data_type), | |
use_locking=True) | |
self.step = adam.apply_gradients(zip(grads, optimize_params), | |
global_step=self.global_step) | |
self.init_op = tf.global_variables_initializer() | |