Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Model construction.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
# Dependency imports | |
import tensorflow as tf | |
from models import bidirectional | |
from models import bidirectional_vd | |
from models import bidirectional_zaremba | |
from models import cnn | |
from models import critic_vd | |
from models import feedforward | |
from models import rnn | |
from models import rnn_nas | |
from models import rnn_vd | |
from models import rnn_zaremba | |
from models import seq2seq | |
from models import seq2seq_nas | |
from models import seq2seq_vd | |
from models import seq2seq_zaremba | |
FLAGS = tf.app.flags.FLAGS | |
# TODO(adai): IMDB labels placeholder to model. | |
def create_generator(hparams, | |
inputs, | |
targets, | |
present, | |
is_training, | |
is_validating, | |
reuse=None): | |
"""Create the Generator model specified by the FLAGS and hparams. | |
Args; | |
hparams: Hyperparameters for the MaskGAN. | |
inputs: tf.int32 Tensor of the sequence input of shape [batch_size, | |
sequence_length]. | |
present: tf.bool Tensor indicating the presence or absence of the token | |
of shape [batch_size, sequence_length]. | |
is_training: Whether the model is training. | |
is_validating: Whether the model is being run in validation mode for | |
calculating the perplexity. | |
reuse (Optional): Whether to reuse the model. | |
Returns: | |
Tuple of the (sequence, logits, log_probs) of the Generator. Sequence | |
and logits have shape [batch_size, sequence_length, vocab_size]. The | |
log_probs will have shape [batch_size, sequence_length]. Log_probs | |
corresponds to the log probability of selecting the words. | |
""" | |
if FLAGS.generator_model == 'rnn': | |
(sequence, logits, log_probs, initial_state, final_state) = rnn.generator( | |
hparams, | |
inputs, | |
targets, | |
present, | |
is_training=is_training, | |
is_validating=is_validating, | |
reuse=reuse) | |
elif FLAGS.generator_model == 'rnn_zaremba': | |
(sequence, logits, log_probs, initial_state, | |
final_state) = rnn_zaremba.generator( | |
hparams, | |
inputs, | |
targets, | |
present, | |
is_training=is_training, | |
is_validating=is_validating, | |
reuse=reuse) | |
elif FLAGS.generator_model == 'seq2seq': | |
(sequence, logits, log_probs, initial_state, | |
final_state) = seq2seq.generator( | |
hparams, | |
inputs, | |
targets, | |
present, | |
is_training=is_training, | |
is_validating=is_validating, | |
reuse=reuse) | |
elif FLAGS.generator_model == 'seq2seq_zaremba': | |
(sequence, logits, log_probs, initial_state, | |
final_state) = seq2seq_zaremba.generator( | |
hparams, | |
inputs, | |
targets, | |
present, | |
is_training=is_training, | |
is_validating=is_validating, | |
reuse=reuse) | |
elif FLAGS.generator_model == 'rnn_nas': | |
(sequence, logits, log_probs, initial_state, | |
final_state) = rnn_nas.generator( | |
hparams, | |
inputs, | |
targets, | |
present, | |
is_training=is_training, | |
is_validating=is_validating, | |
reuse=reuse) | |
elif FLAGS.generator_model == 'seq2seq_nas': | |
(sequence, logits, log_probs, initial_state, | |
final_state) = seq2seq_nas.generator( | |
hparams, | |
inputs, | |
targets, | |
present, | |
is_training=is_training, | |
is_validating=is_validating, | |
reuse=reuse) | |
elif FLAGS.generator_model == 'seq2seq_vd': | |
(sequence, logits, log_probs, initial_state, final_state, | |
encoder_states) = seq2seq_vd.generator( | |
hparams, | |
inputs, | |
targets, | |
present, | |
is_training=is_training, | |
is_validating=is_validating, | |
reuse=reuse) | |
else: | |
raise NotImplementedError | |
return (sequence, logits, log_probs, initial_state, final_state, | |
encoder_states) | |
def create_discriminator(hparams, | |
sequence, | |
is_training, | |
reuse=None, | |
initial_state=None, | |
inputs=None, | |
present=None): | |
"""Create the Discriminator model specified by the FLAGS and hparams. | |
Args: | |
hparams: Hyperparameters for the MaskGAN. | |
sequence: tf.int32 Tensor sequence of shape [batch_size, sequence_length] | |
is_training: Whether the model is training. | |
reuse (Optional): Whether to reuse the model. | |
Returns: | |
predictions: tf.float32 Tensor of predictions of shape [batch_size, | |
sequence_length] | |
""" | |
if FLAGS.discriminator_model == 'cnn': | |
predictions = cnn.discriminator( | |
hparams, sequence, is_training=is_training, reuse=reuse) | |
elif FLAGS.discriminator_model == 'fnn': | |
predictions = feedforward.discriminator( | |
hparams, sequence, is_training=is_training, reuse=reuse) | |
elif FLAGS.discriminator_model == 'rnn': | |
predictions = rnn.discriminator( | |
hparams, sequence, is_training=is_training, reuse=reuse) | |
elif FLAGS.discriminator_model == 'bidirectional': | |
predictions = bidirectional.discriminator( | |
hparams, sequence, is_training=is_training, reuse=reuse) | |
elif FLAGS.discriminator_model == 'bidirectional_zaremba': | |
predictions = bidirectional_zaremba.discriminator( | |
hparams, sequence, is_training=is_training, reuse=reuse) | |
elif FLAGS.discriminator_model == 'seq2seq_vd': | |
predictions = seq2seq_vd.discriminator( | |
hparams, | |
inputs, | |
present, | |
sequence, | |
is_training=is_training, | |
reuse=reuse) | |
elif FLAGS.discriminator_model == 'rnn_zaremba': | |
predictions = rnn_zaremba.discriminator( | |
hparams, sequence, is_training=is_training, reuse=reuse) | |
elif FLAGS.discriminator_model == 'rnn_nas': | |
predictions = rnn_nas.discriminator( | |
hparams, sequence, is_training=is_training, reuse=reuse) | |
elif FLAGS.discriminator_model == 'rnn_vd': | |
predictions = rnn_vd.discriminator( | |
hparams, | |
sequence, | |
is_training=is_training, | |
reuse=reuse, | |
initial_state=initial_state) | |
elif FLAGS.discriminator_model == 'bidirectional_vd': | |
predictions = bidirectional_vd.discriminator( | |
hparams, | |
sequence, | |
is_training=is_training, | |
reuse=reuse, | |
initial_state=initial_state) | |
else: | |
raise NotImplementedError | |
return predictions | |
def create_critic(hparams, sequence, is_training, reuse=None): | |
"""Create the Critic model specified by the FLAGS and hparams. | |
Args: | |
hparams: Hyperparameters for the MaskGAN. | |
sequence: tf.int32 Tensor sequence of shape [batch_size, sequence_length] | |
is_training: Whether the model is training. | |
reuse (Optional): Whether to reuse the model. | |
Returns: | |
values: tf.float32 Tensor of predictions of shape [batch_size, | |
sequence_length] | |
""" | |
if FLAGS.baseline_method == 'critic': | |
if FLAGS.discriminator_model == 'seq2seq_vd': | |
values = critic_vd.critic_seq2seq_vd_derivative( | |
hparams, sequence, is_training, reuse=reuse) | |
else: | |
raise NotImplementedError | |
else: | |
raise NotImplementedError | |
return values | |