Spaces:
Running
Running
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Provides flags that are common to scripts. | |
Common flags from train/vis_video.py are collected in this script. | |
""" | |
import tensorflow as tf | |
from deeplab import common | |
flags = tf.app.flags | |
flags.DEFINE_enum( | |
'classification_loss', 'softmax_with_attention', | |
['softmax', 'triplet', 'softmax_with_attention'], | |
'Type of loss function used for classifying pixels, can be either softmax, ' | |
'softmax_with_attention, or triplet.') | |
flags.DEFINE_integer('k_nearest_neighbors', 1, | |
'The number of nearest neighbors to use.') | |
flags.DEFINE_integer('embedding_dimension', 100, 'The dimension used for the ' | |
'learned embedding') | |
flags.DEFINE_boolean('use_softmax_feedback', True, | |
'Whether to give the softmax predictions of the last ' | |
'frame as additional input to the segmentation head.') | |
flags.DEFINE_boolean('sample_adjacent_and_consistent_query_frames', True, | |
'If true, the query frames (all but the first frame ' | |
'which is the reference frame) will be sampled such ' | |
'that they are adjacent video frames and have the same ' | |
'crop coordinates and flip augmentation. Note that if ' | |
'use_softmax_feedback is True, this option will ' | |
'automatically be activated.') | |
flags.DEFINE_integer('embedding_seg_feature_dimension', 256, | |
'The dimensionality used in the segmentation head layers.') | |
flags.DEFINE_integer('embedding_seg_n_layers', 4, 'The number of layers in the ' | |
'segmentation head.') | |
flags.DEFINE_integer('embedding_seg_kernel_size', 7, 'The kernel size used in ' | |
'the segmentation head.') | |
flags.DEFINE_multi_integer('embedding_seg_atrous_rates', [], | |
'The atrous rates to use for the segmentation head.') | |
flags.DEFINE_boolean('normalize_nearest_neighbor_distances', True, | |
'Whether to normalize the nearest neighbor distances ' | |
'to [0,1] using sigmoid, scale and shift.') | |
flags.DEFINE_boolean('also_attend_to_previous_frame', True, 'Whether to also ' | |
'use nearest neighbor attention with respect to the ' | |
'previous frame.') | |
flags.DEFINE_bool('use_local_previous_frame_attention', True, | |
'Whether to restrict the previous frame attention to a local ' | |
'search window. Only has an effect, if ' | |
'also_attend_to_previous_frame is True.') | |
flags.DEFINE_integer('previous_frame_attention_window_size', 15, | |
'The window size used for local previous frame attention,' | |
' if use_local_previous_frame_attention is True.') | |
flags.DEFINE_boolean('use_first_frame_matching', True, 'Whether to extract ' | |
'features by matching to the reference frame. This should ' | |
'always be true except for ablation experiments.') | |
FLAGS = flags.FLAGS | |
# Constants | |
# Perform semantic segmentation predictions. | |
OUTPUT_TYPE = common.OUTPUT_TYPE | |
# Semantic segmentation item names. | |
LABELS_CLASS = common.LABELS_CLASS | |
IMAGE = common.IMAGE | |
HEIGHT = common.HEIGHT | |
WIDTH = common.WIDTH | |
IMAGE_NAME = common.IMAGE_NAME | |
SOURCE_ID = 'source_id' | |
VIDEO_ID = 'video_id' | |
LABEL = common.LABEL | |
ORIGINAL_IMAGE = common.ORIGINAL_IMAGE | |
PRECEDING_FRAME_LABEL = 'preceding_frame_label' | |
# Test set name. | |
TEST_SET = common.TEST_SET | |
# Internal constants. | |
OBJECT_LABEL = 'object_label' | |
class VideoModelOptions(common.ModelOptions): | |
"""Internal version of immutable class to hold model options.""" | |
def __new__(cls, | |
outputs_to_num_classes, | |
crop_size=None, | |
atrous_rates=None, | |
output_stride=8): | |
"""Constructor to set default values. | |
Args: | |
outputs_to_num_classes: A dictionary from output type to the number of | |
classes. For example, for the task of semantic segmentation with 21 | |
semantic classes, we would have outputs_to_num_classes['semantic'] = 21. | |
crop_size: A tuple [crop_height, crop_width]. | |
atrous_rates: A list of atrous convolution rates for ASPP. | |
output_stride: The ratio of input to output spatial resolution. | |
Returns: | |
A new VideoModelOptions instance. | |
""" | |
self = super(VideoModelOptions, cls).__new__( | |
cls, | |
outputs_to_num_classes, | |
crop_size, | |
atrous_rates, | |
output_stride) | |
# Add internal flags. | |
self.classification_loss = FLAGS.classification_loss | |
return self | |
def parse_decoder_output_stride(): | |
"""Parses decoder output stride. | |
FEELVOS assumes decoder_output_stride = 4. Thus, this function is created for | |
this particular purpose. | |
Returns: | |
An integer specifying the decoder_output_stride. | |
Raises: | |
ValueError: If decoder_output_stride is None or contains more than one | |
element. | |
""" | |
if FLAGS.decoder_output_stride: | |
decoder_output_stride = [ | |
int(x) for x in FLAGS.decoder_output_stride] | |
if len(decoder_output_stride) != 1: | |
raise ValueError('Expect decoder output stride has only one element.') | |
decoder_output_stride = decoder_output_stride[0] | |
else: | |
raise ValueError('Expect flag decoder output stride not to be None.') | |
return decoder_output_stride | |