Spaces:
Running
Running
# Copyright 2017 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Generates vocabulary and term frequency files for datasets.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from six import iteritems | |
from collections import defaultdict | |
# Dependency imports | |
import tensorflow as tf | |
from data import data_utils | |
from data import document_generators | |
flags = tf.app.flags | |
FLAGS = flags.FLAGS | |
# Flags controlling input are in document_generators.py | |
flags.DEFINE_string('output_dir', '', | |
'Path to save vocab.txt and vocab_freq.txt.') | |
flags.DEFINE_boolean('use_unlabeled', True, 'Whether to use the ' | |
'unlabeled sentiment dataset in the vocabulary.') | |
flags.DEFINE_boolean('include_validation', False, 'Whether to include the ' | |
'validation set in the vocabulary.') | |
flags.DEFINE_integer('doc_count_threshold', 1, 'The minimum number of ' | |
'documents a word or bigram should occur in to keep ' | |
'it in the vocabulary.') | |
MAX_VOCAB_SIZE = 100 * 1000 | |
def fill_vocab_from_doc(doc, vocab_freqs, doc_counts): | |
"""Fills vocabulary and doc counts with tokens from doc. | |
Args: | |
doc: Document to read tokens from. | |
vocab_freqs: dict<token, frequency count> | |
doc_counts: dict<token, document count> | |
Returns: | |
None | |
""" | |
doc_seen = set() | |
for token in document_generators.tokens(doc): | |
if doc.add_tokens or token in vocab_freqs: | |
vocab_freqs[token] += 1 | |
if token not in doc_seen: | |
doc_counts[token] += 1 | |
doc_seen.add(token) | |
def main(_): | |
tf.logging.set_verbosity(tf.logging.INFO) | |
vocab_freqs = defaultdict(int) | |
doc_counts = defaultdict(int) | |
# Fill vocabulary frequencies map and document counts map | |
for doc in document_generators.documents( | |
dataset='train', | |
include_unlabeled=FLAGS.use_unlabeled, | |
include_validation=FLAGS.include_validation): | |
fill_vocab_from_doc(doc, vocab_freqs, doc_counts) | |
# Filter out low-occurring terms | |
vocab_freqs = dict((term, freq) for term, freq in iteritems(vocab_freqs) | |
if doc_counts[term] > FLAGS.doc_count_threshold) | |
# Sort by frequency | |
ordered_vocab_freqs = data_utils.sort_vocab_by_frequency(vocab_freqs) | |
# Limit vocab size | |
ordered_vocab_freqs = ordered_vocab_freqs[:MAX_VOCAB_SIZE] | |
# Add EOS token | |
ordered_vocab_freqs.append((data_utils.EOS_TOKEN, 1)) | |
# Write | |
tf.gfile.MakeDirs(FLAGS.output_dir) | |
data_utils.write_vocab_and_frequency(ordered_vocab_freqs, FLAGS.output_dir) | |
if __name__ == '__main__': | |
tf.app.run() | |