Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
import tensorflow as tf | |
def fc_layer(name, | |
bottom, | |
output_dim, | |
bias_term=True, | |
weights_initializer=None, | |
biases_initializer=None, | |
reuse=None): | |
# flatten bottom input | |
shape = bottom.get_shape().as_list() | |
input_dim = 1 | |
for d in shape[1:]: | |
input_dim *= d | |
flat_bottom = tf.reshape(bottom, [-1, input_dim]) | |
# weights and biases variables | |
with tf.variable_scope(name, reuse=reuse): | |
# initialize the variables | |
if weights_initializer is None: | |
weights_initializer = tf.contrib.layers.xavier_initializer() | |
if bias_term and biases_initializer is None: | |
biases_initializer = tf.constant_initializer(0.) | |
# weights has shape [input_dim, output_dim] | |
weights = tf.get_variable( | |
'weights', [input_dim, output_dim], initializer=weights_initializer) | |
if bias_term: | |
biases = tf.get_variable( | |
'biases', output_dim, initializer=biases_initializer) | |
if not reuse: | |
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, | |
tf.nn.l2_loss(weights)) | |
if bias_term: | |
fc = tf.nn.xw_plus_b(flat_bottom, weights, biases) | |
else: | |
fc = tf.matmul(flat_bottom, weights) | |
return fc | |