Spaces:
Running
Running
#!/usr/bin/python | |
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
import tensorflow as tf | |
import csv | |
import os | |
import argparse | |
""" | |
usage: | |
Processes all .jpg, .png, .bmp and .gif files found in the specified directory and its subdirectories. | |
--PATH ( Path to directory of images or path to directory with subdirectory of images). e.g Path/To/Directory/ | |
--Model_PATH path to the tensorflow model | |
""" | |
parser = argparse.ArgumentParser(description='Crystal Detection Program') | |
parser.add_argument('--PATH', type=str, help='path to image directory. Recursively finds all image files in directory and sub directories') # path to image directory or containing sub directories. | |
parser.add_argument('--MODEL_PATH', type=str, default='./savedmodel',help='the file path to the tensorflow model ') | |
args = vars(parser.parse_args()) | |
PATH = args['PATH'] | |
model_path = args['MODEL_PATH'] | |
crystal_images = [os.path.join(dp, f) for dp, dn, filenames in os.walk(PATH) for f in filenames if os.path.splitext(f)[1] in ['.jpg','png','bmp','gif']] | |
size = len(crystal_images) | |
def load_images(file_list): | |
for i in file_list: | |
files = open(i,'rb') | |
yield {"image_bytes":[files.read()]},i | |
iterator = load_images(crystal_images) | |
with open(PATH +'results.csv', 'w') as csvfile: | |
Writer = csv.writer(csvfile, delimiter=' ',quotechar=' ', quoting=csv.QUOTE_MINIMAL) | |
predicter= tf.contrib.predictor.from_saved_model(model_path) | |
dic = {} | |
k = 0 | |
for _ in range(size): | |
data,name = next(iterator) | |
results = predicter(data) | |
vals =results['scores'][0] | |
classes = results['classes'][0] | |
dictionary = dict(zip(classes,vals)) | |
print('Image path: '+ name+' Crystal: '+str(dictionary[b'Crystals'])+' Other: '+ str(dictionary[b'Other'])+' Precipitate: '+ str(dictionary[b'Precipitate'])+' Clear: '+ str(dictionary[b'Clear'])) | |
Writer.writerow(['Image path: '+ name,'Crystal: '+str(dictionary[b'Crystals']),'Other: '+ str(dictionary[b'Other']),'Precipitate: '+ str(dictionary[b'Precipitate']),'Clear: '+ str(dictionary[b'Clear'])]) | |