NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
5.47 kB
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Beam search in TF v2."""
import tensorflow as tf
from official.nlp.transformer import beam_search_v1 as v1
_StateKeys = v1._StateKeys # pylint: disable=protected-access
class SequenceBeamSearchV2(v1.SequenceBeamSearch):
"""Implementation of beam search loop in v2."""
def search(self, initial_ids, initial_cache):
"""Beam search for sequences with highest scores."""
state, state_shapes = self._create_initial_state(initial_ids, initial_cache)
finished_state = tf.nest.map_structure(
tf.stop_gradient,
tf.while_loop(self._continue_search,
self._search_step,
loop_vars=[state],
shape_invariants=[state_shapes],
parallel_iterations=1))
finished_state = finished_state[0]
alive_seq = finished_state[_StateKeys.ALIVE_SEQ]
alive_log_probs = finished_state[_StateKeys.ALIVE_LOG_PROBS]
finished_seq = finished_state[_StateKeys.FINISHED_SEQ]
finished_scores = finished_state[_StateKeys.FINISHED_SCORES]
finished_flags = finished_state[_StateKeys.FINISHED_FLAGS]
# 2.0 changes tf.where behavior. Should make parameters broadcastable.
finished_cond = tf.reduce_any(finished_flags, 1, name="finished_cond")
seq_cond = _expand_to_same_rank(finished_cond, finished_seq)
score_cond = _expand_to_same_rank(finished_cond, finished_scores)
# Account for corner case where there are no finished sequences for a
# particular batch item. In that case, return alive sequences for that batch
# item.
finished_seq = tf.where(seq_cond, finished_seq, alive_seq)
finished_scores = tf.where(
score_cond, finished_scores, alive_log_probs)
return finished_seq, finished_scores
def sequence_beam_search(symbols_to_logits_fn,
initial_ids,
initial_cache,
vocab_size,
beam_size,
alpha,
max_decode_length,
eos_id,
padded_decode=False,
dtype="float32"):
"""Search for sequence of subtoken ids with the largest probability.
Args:
symbols_to_logits_fn: A function that takes in ids, index, and cache as
arguments. The passed in arguments will have shape:
ids -> A tensor with shape [batch_size * beam_size, index].
index -> A scalar.
cache -> A nested dictionary of tensors [batch_size * beam_size, ...].
The function must return a tuple of logits and new cache:
logits -> A tensor with shape [batch * beam_size, vocab_size].
new cache -> A nested dictionary with the same shape/structure as the
inputted cache.
initial_ids: An int32 tensor with shape [batch_size]. Starting ids for
each batch item.
initial_cache: A dictionary, containing starting decoder variables
information.
vocab_size: An integer, the size of tokens.
beam_size: An integer, the number of beams.
alpha: A float, defining the strength of length normalization.
max_decode_length: An integer, the maximum length to decoded a sequence.
eos_id: An integer, ID of eos token, used to determine when a sequence has
finished.
padded_decode: A bool, indicating if max_sequence_length padding is used
for beam search.
dtype: A tensorflow data type used for score computation. The default is
tf.float32.
Returns:
Top decoded sequences [batch_size, beam_size, max_decode_length]
sequence scores [batch_size, beam_size]
"""
batch_size = (
initial_ids.shape.as_list()[0] if padded_decode else
tf.shape(initial_ids)[0])
sbs = SequenceBeamSearchV2(symbols_to_logits_fn, vocab_size, batch_size,
beam_size, alpha, max_decode_length, eos_id,
padded_decode, dtype)
return sbs.search(initial_ids, initial_cache)
def _expand_to_same_rank(tensor, target):
"""Expands a given tensor to target's rank to be broadcastable.
Args:
tensor: input tensor to tile. Shape: [b, d1, ..., da]
target: target tensor. Shape: [b, d1, ..., da, ..., dn]
Returns:
Tiled tensor of shape [b, d1, ..., da, 1, ..., 1] with same rank of target.
Raises:
ValueError, if the shape rank of rank tensor/target is None.
"""
if tensor.shape.rank is None:
raise ValueError("Expect rank for tensor shape, but got None.")
if target.shape.rank is None:
raise ValueError("Expect rank for target shape, but got None.")
with tf.name_scope("expand_rank"):
diff_rank = target.shape.rank - tensor.shape.rank
for _ in range(diff_rank):
tensor = tf.expand_dims(tensor, -1)
return tensor