NCTC / models /official /nlp /tasks /sentence_prediction_test.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
6.44 kB
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.tasks.sentence_prediction."""
import functools
import os
from absl.testing import parameterized
import tensorflow as tf
from official.nlp.bert import configs
from official.nlp.bert import export_tfhub
from official.nlp.configs import bert
from official.nlp.configs import encoders
from official.nlp.tasks import sentence_prediction
class SentencePredictionTaskTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(SentencePredictionTaskTest, self).setUp()
self._train_data_config = bert.SentencePredictionDataConfig(
input_path="dummy", seq_length=128, global_batch_size=1)
def get_network_config(self, num_classes):
return bert.BertPretrainerConfig(
encoder=encoders.TransformerEncoderConfig(
vocab_size=30522, num_layers=1),
num_masked_tokens=0,
cls_heads=[
bert.ClsHeadConfig(
inner_dim=10,
num_classes=num_classes,
name="sentence_prediction")
])
def _run_task(self, config):
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
metrics = task.build_metrics()
strategy = tf.distribute.get_strategy()
dataset = strategy.experimental_distribute_datasets_from_function(
functools.partial(task.build_inputs, config.train_data))
iterator = iter(dataset)
optimizer = tf.keras.optimizers.SGD(lr=0.1)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
task.validation_step(next(iterator), model, metrics=metrics)
def test_task(self):
config = sentence_prediction.SentencePredictionConfig(
init_checkpoint=self.get_temp_dir(),
network=self.get_network_config(2),
train_data=self._train_data_config)
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
metrics = task.build_metrics()
dataset = task.build_inputs(config.train_data)
iterator = iter(dataset)
optimizer = tf.keras.optimizers.SGD(lr=0.1)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
task.validation_step(next(iterator), model, metrics=metrics)
# Saves a checkpoint.
pretrain_cfg = bert.BertPretrainerConfig(
encoder=encoders.TransformerEncoderConfig(
vocab_size=30522, num_layers=1),
num_masked_tokens=20,
cls_heads=[
bert.ClsHeadConfig(
inner_dim=10, num_classes=3, name="next_sentence")
])
pretrain_model = bert.instantiate_bertpretrainer_from_cfg(pretrain_cfg)
ckpt = tf.train.Checkpoint(
model=pretrain_model, **pretrain_model.checkpoint_items)
ckpt.save(config.init_checkpoint)
task.initialize(model)
@parameterized.parameters(("matthews_corrcoef", 2),
("pearson_spearman_corr", 1))
def test_np_metrics(self, metric_type, num_classes):
config = sentence_prediction.SentencePredictionConfig(
metric_type=metric_type,
init_checkpoint=self.get_temp_dir(),
network=self.get_network_config(num_classes),
train_data=self._train_data_config)
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
dataset = task.build_inputs(config.train_data)
iterator = iter(dataset)
strategy = tf.distribute.get_strategy()
distributed_outputs = strategy.run(
functools.partial(task.validation_step, model=model),
args=(next(iterator),))
outputs = tf.nest.map_structure(strategy.experimental_local_results,
distributed_outputs)
aggregated = task.aggregate_logs(step_outputs=outputs)
aggregated = task.aggregate_logs(state=aggregated, step_outputs=outputs)
self.assertIn(metric_type, task.reduce_aggregated_logs(aggregated))
def test_task_with_fit(self):
config = sentence_prediction.SentencePredictionConfig(
network=self.get_network_config(2), train_data=self._train_data_config)
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
model = task.compile_model(
model,
optimizer=tf.keras.optimizers.SGD(lr=0.1),
train_step=task.train_step,
metrics=task.build_metrics())
dataset = task.build_inputs(config.train_data)
logs = model.fit(dataset, epochs=1, steps_per_epoch=2)
self.assertIn("loss", logs.history)
def _export_bert_tfhub(self):
bert_config = configs.BertConfig(
vocab_size=30522,
hidden_size=16,
intermediate_size=32,
max_position_embeddings=128,
num_attention_heads=2,
num_hidden_layers=1)
_, encoder = export_tfhub.create_bert_model(bert_config)
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
checkpoint = tf.train.Checkpoint(model=encoder)
checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)
vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt")
with tf.io.gfile.GFile(vocab_file, "w") as f:
f.write("dummy content")
hub_destination = os.path.join(self.get_temp_dir(), "hub")
export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path,
hub_destination, vocab_file)
return hub_destination
def test_task_with_hub(self):
hub_module_url = self._export_bert_tfhub()
config = sentence_prediction.SentencePredictionConfig(
hub_module_url=hub_module_url,
network=self.get_network_config(2),
train_data=self._train_data_config)
self._run_task(config)
if __name__ == "__main__":
tf.test.main()