Spaces:
Running
Running
# Lint as: python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""A Classification head layer which is common used with sequence encoders.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
# from __future__ import google_type_annotations | |
from __future__ import print_function | |
import tensorflow as tf | |
from official.modeling import tf_utils | |
class ClassificationHead(tf.keras.layers.Layer): | |
"""Pooling head for sentence-level classification tasks.""" | |
def __init__(self, | |
inner_dim, | |
num_classes, | |
cls_token_idx=0, | |
activation="tanh", | |
dropout_rate=0.0, | |
initializer="glorot_uniform", | |
**kwargs): | |
"""Initializes the `ClassificationHead`. | |
Args: | |
inner_dim: The dimensionality of inner projection layer. | |
num_classes: Number of output classes. | |
cls_token_idx: The index inside the sequence to pool. | |
activation: Dense layer activation. | |
dropout_rate: Dropout probability. | |
initializer: Initializer for dense layer kernels. | |
**kwargs: Keyword arguments. | |
""" | |
super(ClassificationHead, self).__init__(**kwargs) | |
self.dropout_rate = dropout_rate | |
self.inner_dim = inner_dim | |
self.num_classes = num_classes | |
self.activation = tf_utils.get_activation(activation) | |
self.initializer = tf.keras.initializers.get(initializer) | |
self.cls_token_idx = cls_token_idx | |
self.dense = tf.keras.layers.Dense( | |
units=inner_dim, | |
activation=self.activation, | |
kernel_initializer=self.initializer, | |
name="pooler_dense") | |
self.dropout = tf.keras.layers.Dropout(rate=self.dropout_rate) | |
self.out_proj = tf.keras.layers.Dense( | |
units=num_classes, kernel_initializer=self.initializer, name="logits") | |
def call(self, features): | |
x = features[:, self.cls_token_idx, :] # take <CLS> token. | |
x = self.dense(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
def get_config(self): | |
config = { | |
"dropout_rate": self.dropout_rate, | |
"num_classes": self.num_classes, | |
"inner_dim": self.inner_dim, | |
"activation": tf.keras.activations.serialize(self.activation), | |
"initializer": tf.keras.initializers.serialize(self.initializer), | |
} | |
config.update(super(ClassificationHead, self).get_config()) | |
return config | |
def from_config(cls, config, custom_objects=None): | |
return cls(**config) | |
def checkpoint_items(self): | |
return {self.dense.name: self.dense} | |