Spaces:
Running
Running
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
r"""Runs evaluation using OpenImages groundtruth and predictions. | |
Uses Open Images Challenge 2018, 2019 metrics | |
Example usage: | |
python models/research/object_detection/metrics/oid_od_challenge_evaluation.py \ | |
--input_annotations_boxes=/path/to/input/annotations-human-bbox.csv \ | |
--input_annotations_labels=/path/to/input/annotations-label.csv \ | |
--input_class_labelmap=/path/to/input/class_labelmap.pbtxt \ | |
--input_predictions=/path/to/input/predictions.csv \ | |
--output_metrics=/path/to/output/metric.csv \ | |
--input_annotations_segm=[/path/to/input/annotations-human-mask.csv] \ | |
If optional flag has_masks is True, Mask column is also expected in CSV. | |
CSVs with bounding box annotations, instance segmentations and image label | |
can be downloaded from the Open Images Challenge website: | |
https://storage.googleapis.com/openimages/web/challenge.html | |
The format of the input csv and the metrics itself are described on the | |
challenge website as well. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import logging | |
from absl import app | |
from absl import flags | |
import pandas as pd | |
from google.protobuf import text_format | |
from object_detection.metrics import io_utils | |
from object_detection.metrics import oid_challenge_evaluation_utils as utils | |
from object_detection.protos import string_int_label_map_pb2 | |
from object_detection.utils import object_detection_evaluation | |
flags.DEFINE_string('input_annotations_boxes', None, | |
'File with groundtruth boxes annotations.') | |
flags.DEFINE_string('input_annotations_labels', None, | |
'File with groundtruth labels annotations.') | |
flags.DEFINE_string( | |
'input_predictions', None, | |
"""File with detection predictions; NOTE: no postprocessing is applied in the evaluation script.""" | |
) | |
flags.DEFINE_string('input_class_labelmap', None, | |
'Open Images Challenge labelmap.') | |
flags.DEFINE_string('output_metrics', None, 'Output file with csv metrics.') | |
flags.DEFINE_string( | |
'input_annotations_segm', None, | |
'File with groundtruth instance segmentation annotations [OPTIONAL].') | |
FLAGS = flags.FLAGS | |
def _load_labelmap(labelmap_path): | |
"""Loads labelmap from the labelmap path. | |
Args: | |
labelmap_path: Path to the labelmap. | |
Returns: | |
A dictionary mapping class name to class numerical id | |
A list with dictionaries, one dictionary per category. | |
""" | |
label_map = string_int_label_map_pb2.StringIntLabelMap() | |
with open(labelmap_path, 'r') as fid: | |
label_map_string = fid.read() | |
text_format.Merge(label_map_string, label_map) | |
labelmap_dict = {} | |
categories = [] | |
for item in label_map.item: | |
labelmap_dict[item.name] = item.id | |
categories.append({'id': item.id, 'name': item.name}) | |
return labelmap_dict, categories | |
def main(unused_argv): | |
flags.mark_flag_as_required('input_annotations_boxes') | |
flags.mark_flag_as_required('input_annotations_labels') | |
flags.mark_flag_as_required('input_predictions') | |
flags.mark_flag_as_required('input_class_labelmap') | |
flags.mark_flag_as_required('output_metrics') | |
all_location_annotations = pd.read_csv(FLAGS.input_annotations_boxes) | |
all_label_annotations = pd.read_csv(FLAGS.input_annotations_labels) | |
all_label_annotations.rename( | |
columns={'Confidence': 'ConfidenceImageLabel'}, inplace=True) | |
is_instance_segmentation_eval = False | |
if FLAGS.input_annotations_segm: | |
is_instance_segmentation_eval = True | |
all_segm_annotations = pd.read_csv(FLAGS.input_annotations_segm) | |
# Note: this part is unstable as it requires the float point numbers in both | |
# csvs are exactly the same; | |
# Will be replaced by more stable solution: merge on LabelName and ImageID | |
# and filter down by IoU. | |
all_location_annotations = utils.merge_boxes_and_masks( | |
all_location_annotations, all_segm_annotations) | |
all_annotations = pd.concat([all_location_annotations, all_label_annotations]) | |
class_label_map, categories = _load_labelmap(FLAGS.input_class_labelmap) | |
challenge_evaluator = ( | |
object_detection_evaluation.OpenImagesChallengeEvaluator( | |
categories, evaluate_masks=is_instance_segmentation_eval)) | |
all_predictions = pd.read_csv(FLAGS.input_predictions) | |
images_processed = 0 | |
for _, groundtruth in enumerate(all_annotations.groupby('ImageID')): | |
logging.info('Processing image %d', images_processed) | |
image_id, image_groundtruth = groundtruth | |
groundtruth_dictionary = utils.build_groundtruth_dictionary( | |
image_groundtruth, class_label_map) | |
challenge_evaluator.add_single_ground_truth_image_info( | |
image_id, groundtruth_dictionary) | |
prediction_dictionary = utils.build_predictions_dictionary( | |
all_predictions.loc[all_predictions['ImageID'] == image_id], | |
class_label_map) | |
challenge_evaluator.add_single_detected_image_info(image_id, | |
prediction_dictionary) | |
images_processed += 1 | |
metrics = challenge_evaluator.evaluate() | |
with open(FLAGS.output_metrics, 'w') as fid: | |
io_utils.write_csv(fid, metrics) | |
if __name__ == '__main__': | |
app.run(main) | |