Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Object detection calibration metrics. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow.compat.v1 as tf | |
from tensorflow.python.ops import metrics_impl | |
def _safe_div(numerator, denominator): | |
"""Divides two tensors element-wise, returning 0 if the denominator is <= 0. | |
Args: | |
numerator: A real `Tensor`. | |
denominator: A real `Tensor`, with dtype matching `numerator`. | |
Returns: | |
0 if `denominator` <= 0, else `numerator` / `denominator` | |
""" | |
t = tf.truediv(numerator, denominator) | |
zero = tf.zeros_like(t, dtype=denominator.dtype) | |
condition = tf.greater(denominator, zero) | |
zero = tf.cast(zero, t.dtype) | |
return tf.where(condition, t, zero) | |
def _ece_from_bins(bin_counts, bin_true_sum, bin_preds_sum, name): | |
"""Calculates Expected Calibration Error from accumulated statistics.""" | |
bin_accuracies = _safe_div(bin_true_sum, bin_counts) | |
bin_confidences = _safe_div(bin_preds_sum, bin_counts) | |
abs_bin_errors = tf.abs(bin_accuracies - bin_confidences) | |
bin_weights = _safe_div(bin_counts, tf.reduce_sum(bin_counts)) | |
return tf.reduce_sum(abs_bin_errors * bin_weights, name=name) | |
def expected_calibration_error(y_true, y_pred, nbins=20): | |
"""Calculates Expected Calibration Error (ECE). | |
ECE is a scalar summary statistic of calibration error. It is the | |
sample-weighted average of the difference between the predicted and true | |
probabilities of a positive detection across uniformly-spaced model | |
confidences [0, 1]. See referenced paper for a thorough explanation. | |
Reference: | |
Guo, et. al, "On Calibration of Modern Neural Networks" | |
Page 2, Expected Calibration Error (ECE). | |
https://arxiv.org/pdf/1706.04599.pdf | |
This function creates three local variables, `bin_counts`, `bin_true_sum`, and | |
`bin_preds_sum` that are used to compute ECE. For estimation of the metric | |
over a stream of data, the function creates an `update_op` operation that | |
updates these variables and returns the ECE. | |
Args: | |
y_true: 1-D tf.int64 Tensor of binarized ground truth, corresponding to each | |
prediction in y_pred. | |
y_pred: 1-D tf.float32 tensor of model confidence scores in range | |
[0.0, 1.0]. | |
nbins: int specifying the number of uniformly-spaced bins into which y_pred | |
will be bucketed. | |
Returns: | |
value_op: A value metric op that returns ece. | |
update_op: An operation that increments the `bin_counts`, `bin_true_sum`, | |
and `bin_preds_sum` variables appropriately and whose value matches `ece`. | |
Raises: | |
InvalidArgumentError: if y_pred is not in [0.0, 1.0]. | |
""" | |
bin_counts = metrics_impl.metric_variable( | |
[nbins], tf.float32, name='bin_counts') | |
bin_true_sum = metrics_impl.metric_variable( | |
[nbins], tf.float32, name='true_sum') | |
bin_preds_sum = metrics_impl.metric_variable( | |
[nbins], tf.float32, name='preds_sum') | |
with tf.control_dependencies([ | |
tf.assert_greater_equal(y_pred, 0.0), | |
tf.assert_less_equal(y_pred, 1.0), | |
]): | |
bin_ids = tf.histogram_fixed_width_bins(y_pred, [0.0, 1.0], nbins=nbins) | |
with tf.control_dependencies([bin_ids]): | |
update_bin_counts_op = tf.assign_add( | |
bin_counts, tf.cast(tf.bincount(bin_ids, minlength=nbins), | |
dtype=tf.float32)) | |
update_bin_true_sum_op = tf.assign_add( | |
bin_true_sum, | |
tf.cast(tf.bincount(bin_ids, weights=y_true, minlength=nbins), | |
dtype=tf.float32)) | |
update_bin_preds_sum_op = tf.assign_add( | |
bin_preds_sum, | |
tf.cast(tf.bincount(bin_ids, weights=y_pred, minlength=nbins), | |
dtype=tf.float32)) | |
ece_update_op = _ece_from_bins( | |
update_bin_counts_op, | |
update_bin_true_sum_op, | |
update_bin_preds_sum_op, | |
name='update_op') | |
ece = _ece_from_bins(bin_counts, bin_true_sum, bin_preds_sum, name='value') | |
return ece, ece_update_op | |