NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
2.43 kB
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Custom RNN cells for hierarchical RNNs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from learned_optimizer.optimizer import utils
class BiasGRUCell(tf.contrib.rnn.RNNCell):
"""GRU cell (cf. http://arxiv.org/abs/1406.1078) with an additional bias."""
def __init__(self, num_units, activation=tf.tanh, scale=0.1,
gate_bias_init=0., random_seed=None):
self._num_units = num_units
self._activation = activation
self._scale = scale
self._gate_bias_init = gate_bias_init
self._random_seed = random_seed
@property
def state_size(self):
return self._num_units
@property
def output_size(self):
return self._num_units
def __call__(self, inputs, state, bias=None):
# Split the injected bias vector into a bias for the r, u, and c updates.
if bias is None:
bias = tf.zeros((1, 3))
r_bias, u_bias, c_bias = tf.split(bias, 3, 1)
with tf.variable_scope(type(self).__name__): # "BiasGRUCell"
with tf.variable_scope("gates"): # Reset gate and update gate.
proj = utils.affine([inputs, state], 2 * self._num_units,
scale=self._scale, bias_init=self._gate_bias_init,
random_seed=self._random_seed)
r_lin, u_lin = tf.split(proj, 2, 1)
r, u = tf.nn.sigmoid(r_lin + r_bias), tf.nn.sigmoid(u_lin + u_bias)
with tf.variable_scope("candidate"):
proj = utils.affine([inputs, r * state], self._num_units,
scale=self._scale, random_seed=self._random_seed)
c = self._activation(proj + c_bias)
new_h = u * state + (1 - u) * c
return new_h, new_h