Spaces:
Running
Running
# Copyright 2017 Google, Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Custom RNN cells for hierarchical RNNs.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
from learned_optimizer.optimizer import utils | |
class BiasGRUCell(tf.contrib.rnn.RNNCell): | |
"""GRU cell (cf. http://arxiv.org/abs/1406.1078) with an additional bias.""" | |
def __init__(self, num_units, activation=tf.tanh, scale=0.1, | |
gate_bias_init=0., random_seed=None): | |
self._num_units = num_units | |
self._activation = activation | |
self._scale = scale | |
self._gate_bias_init = gate_bias_init | |
self._random_seed = random_seed | |
def state_size(self): | |
return self._num_units | |
def output_size(self): | |
return self._num_units | |
def __call__(self, inputs, state, bias=None): | |
# Split the injected bias vector into a bias for the r, u, and c updates. | |
if bias is None: | |
bias = tf.zeros((1, 3)) | |
r_bias, u_bias, c_bias = tf.split(bias, 3, 1) | |
with tf.variable_scope(type(self).__name__): # "BiasGRUCell" | |
with tf.variable_scope("gates"): # Reset gate and update gate. | |
proj = utils.affine([inputs, state], 2 * self._num_units, | |
scale=self._scale, bias_init=self._gate_bias_init, | |
random_seed=self._random_seed) | |
r_lin, u_lin = tf.split(proj, 2, 1) | |
r, u = tf.nn.sigmoid(r_lin + r_bias), tf.nn.sigmoid(u_lin + u_bias) | |
with tf.variable_scope("candidate"): | |
proj = utils.affine([inputs, r * state], self._num_units, | |
scale=self._scale, random_seed=self._random_seed) | |
c = self._activation(proj + c_bias) | |
new_h = u * state + (1 - u) * c | |
return new_h, new_h | |