NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
33.8 kB
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import sys
import tensorflow as tf
import src.utils as utils
import logging
from tensorflow.contrib import slim
from tensorflow.contrib.metrics.python.ops import confusion_matrix_ops
from tensorflow.contrib.slim import arg_scope
from tensorflow.contrib.slim.nets import resnet_v2
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variable_scope
sys.path.insert(0, '../slim')
from preprocessing import inception_preprocessing as ip
resnet_v2_50 = resnet_v2.resnet_v2_50
def custom_residual_block(x, neurons, kernel_size, stride, name, is_training,
wt_decay=0.0001, use_residual=True,
residual_stride_conv=True, conv_fn=slim.conv2d,
batch_norm_param=None):
# batch norm x and relu
init_var = np.sqrt(2.0/(kernel_size**2)/neurons)
with arg_scope([conv_fn],
weights_regularizer=slim.l2_regularizer(wt_decay),
weights_initializer=tf.random_normal_initializer(stddev=init_var),
biases_initializer=tf.zeros_initializer()):
if batch_norm_param is None:
batch_norm_param = {'center': True, 'scale': False,
'activation_fn':tf.nn.relu,
'is_training': is_training}
y = slim.batch_norm(x, scope=name+'_bn', **batch_norm_param)
y = conv_fn(y, num_outputs=neurons, kernel_size=kernel_size, stride=stride,
activation_fn=None, scope=name+'_1',
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_param)
y = conv_fn(y, num_outputs=neurons, kernel_size=kernel_size,
stride=1, activation_fn=None, scope=name+'_2')
if use_residual:
if stride != 1 or x.get_shape().as_list()[-1] != neurons:
batch_norm_param_ = dict(batch_norm_param)
batch_norm_param_['activation_fn'] = None
x = conv_fn(x, num_outputs=neurons, kernel_size=1,
stride=stride if residual_stride_conv else 1,
activation_fn=None, scope=name+'_0_1x1',
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_param_)
if not residual_stride_conv:
x = slim.avg_pool2d(x, 1, stride=stride, scope=name+'_0_avg')
y = tf.add(x, y, name=name+'_add')
return y
def step_gt_prob(step, step_number_op):
# Change samping probability from 1 to -1 at step steps.
with tf.name_scope('step_gt_prob'):
out = tf.cond(tf.less(step_number_op, step),
lambda: tf.constant(1.), lambda: tf.constant(-1.))
return out
def inverse_sigmoid_decay(k, global_step_op):
with tf.name_scope('inverse_sigmoid_decay'):
k = tf.constant(k, dtype=tf.float32)
tmp = k*tf.exp(-tf.cast(global_step_op, tf.float32)/k)
tmp = tmp / (1. + tmp)
return tmp
def dense_resample(im, flow_im, output_valid_mask, name='dense_resample'):
""" Resample reward at particular locations.
Args:
im: ...xHxWxC matrix to sample from.
flow_im: ...xHxWx2 matrix, samples the image using absolute offsets as given
by the flow_im.
"""
with tf.name_scope(name):
valid_mask = None
x, y = tf.unstack(flow_im, axis=-1)
x = tf.cast(tf.reshape(x, [-1]), tf.float32)
y = tf.cast(tf.reshape(y, [-1]), tf.float32)
# constants
shape = tf.unstack(tf.shape(im))
channels = shape[-1]
width = shape[-2]
height = shape[-3]
num_batch = tf.cast(tf.reduce_prod(tf.stack(shape[:-3])), 'int32')
zero = tf.constant(0, dtype=tf.int32)
# Round up and down.
x0 = tf.cast(tf.floor(x), 'int32'); x1 = x0 + 1;
y0 = tf.cast(tf.floor(y), 'int32'); y1 = y0 + 1;
if output_valid_mask:
valid_mask = tf.logical_and(
tf.logical_and(tf.less_equal(x, tf.cast(width, tf.float32)-1.), tf.greater_equal(x, 0.)),
tf.logical_and(tf.less_equal(y, tf.cast(height, tf.float32)-1.), tf.greater_equal(y, 0.)))
valid_mask = tf.reshape(valid_mask, shape=shape[:-1] + [1])
x0 = tf.clip_by_value(x0, zero, width-1)
x1 = tf.clip_by_value(x1, zero, width-1)
y0 = tf.clip_by_value(y0, zero, height-1)
y1 = tf.clip_by_value(y1, zero, height-1)
dim2 = width; dim1 = width * height;
# Create base index
base = tf.reshape(tf.range(num_batch) * dim1, shape=[-1,1])
base = tf.reshape(tf.tile(base, [1, height*width]), shape=[-1])
base_y0 = base + y0 * dim2
base_y1 = base + y1 * dim2
idx_a = base_y0 + x0
idx_b = base_y1 + x0
idx_c = base_y0 + x1
idx_d = base_y1 + x1
# use indices to lookup pixels in the flat image and restore channels dim
sh = tf.stack([tf.constant(-1,dtype=tf.int32), channels])
im_flat = tf.cast(tf.reshape(im, sh), dtype=tf.float32)
pixel_a = tf.gather(im_flat, idx_a)
pixel_b = tf.gather(im_flat, idx_b)
pixel_c = tf.gather(im_flat, idx_c)
pixel_d = tf.gather(im_flat, idx_d)
# and finally calculate interpolated values
x1_f = tf.to_float(x1)
y1_f = tf.to_float(y1)
wa = tf.expand_dims(((x1_f - x) * (y1_f - y)), 1)
wb = tf.expand_dims((x1_f - x) * (1.0 - (y1_f - y)), 1)
wc = tf.expand_dims(((1.0 - (x1_f - x)) * (y1_f - y)), 1)
wd = tf.expand_dims(((1.0 - (x1_f - x)) * (1.0 - (y1_f - y))), 1)
output = tf.add_n([wa * pixel_a, wb * pixel_b, wc * pixel_c, wd * pixel_d])
output = tf.reshape(output, shape=tf.shape(im))
return output, valid_mask
def get_flow(t, theta, map_size, name_scope='gen_flow'):
"""
Rotates the map by theta and translates the rotated map by t.
Assume that the robot rotates by an angle theta and then moves forward by
translation t. This function returns the flow field field. For every pixel in
the new image it tells us which pixel in the original image it came from:
NewI(x, y) = OldI(flow_x(x,y), flow_y(x,y)).
Assume there is a point p in the original image. Robot rotates by R and moves
forward by t. p1 = Rt*p; p2 = p1 - t; (the world moves in opposite direction.
So, p2 = Rt*p - t, thus p2 came from R*(p2+t), which is what this function
calculates.
t: ... x 2 (translation for B batches of N motions each).
theta: ... x 1 (rotation for B batches of N motions each).
Output: ... x map_size x map_size x 2
"""
with tf.name_scope(name_scope):
tx, ty = tf.unstack(tf.reshape(t, shape=[-1, 1, 1, 1, 2]), axis=4)
theta = tf.reshape(theta, shape=[-1, 1, 1, 1])
c = tf.constant((map_size-1.)/2., dtype=tf.float32)
x, y = np.meshgrid(np.arange(map_size), np.arange(map_size))
x = tf.constant(x[np.newaxis, :, :, np.newaxis], dtype=tf.float32, name='x',
shape=[1, map_size, map_size, 1])
y = tf.constant(y[np.newaxis, :, :, np.newaxis], dtype=tf.float32, name='y',
shape=[1,map_size, map_size, 1])
x = x-(-tx+c)
y = y-(-ty+c)
sin_theta = tf.sin(theta)
cos_theta = tf.cos(theta)
xr = cos_theta*x - sin_theta*y
yr = sin_theta*x + cos_theta*y
xr = xr + c
yr = yr + c
flow = tf.stack([xr, yr], axis=-1)
sh = tf.unstack(tf.shape(t), axis=0)
sh = tf.stack(sh[:-1]+[tf.constant(_, dtype=tf.int32) for _ in [map_size, map_size, 2]])
flow = tf.reshape(flow, shape=sh)
return flow
def distort_image(im, fast_mode=False):
# All images in the same batch are transformed the same way, but over
# iterations you see different distortions.
# im should be float with values between 0 and 1.
im_ = tf.reshape(im, shape=(-1,1,3))
im_ = ip.apply_with_random_selector(
im_, lambda x, ordering: ip.distort_color(x, ordering, fast_mode),
num_cases=4)
im_ = tf.reshape(im_, tf.shape(im))
return im_
def fc_network(x, neurons, wt_decay, name, num_pred=None, offset=0,
batch_norm_param=None, dropout_ratio=0.0, is_training=None):
if dropout_ratio > 0:
assert(is_training is not None), \
'is_training needs to be defined when trainnig with dropout.'
repr = []
for i, neuron in enumerate(neurons):
init_var = np.sqrt(2.0/neuron)
if batch_norm_param is not None:
x = slim.fully_connected(x, neuron, activation_fn=None,
weights_initializer=tf.random_normal_initializer(stddev=init_var),
weights_regularizer=slim.l2_regularizer(wt_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_param,
biases_initializer=tf.zeros_initializer(),
scope='{:s}_{:d}'.format(name, offset+i))
else:
x = slim.fully_connected(x, neuron, activation_fn=tf.nn.relu,
weights_initializer=tf.random_normal_initializer(stddev=init_var),
weights_regularizer=slim.l2_regularizer(wt_decay),
biases_initializer=tf.zeros_initializer(),
scope='{:s}_{:d}'.format(name, offset+i))
if dropout_ratio > 0:
x = slim.dropout(x, keep_prob=1-dropout_ratio, is_training=is_training,
scope='{:s}_{:d}'.format('dropout_'+name, offset+i))
repr.append(x)
if num_pred is not None:
init_var = np.sqrt(2.0/num_pred)
x = slim.fully_connected(x, num_pred,
weights_regularizer=slim.l2_regularizer(wt_decay),
weights_initializer=tf.random_normal_initializer(stddev=init_var),
biases_initializer=tf.zeros_initializer(),
activation_fn=None,
scope='{:s}_pred'.format(name))
return x, repr
def concat_state_x_list(f, names):
af = {}
for i, k in enumerate(names):
af[k] = np.concatenate([x[i] for x in f], axis=1)
return af
def concat_state_x(f, names):
af = {}
for k in names:
af[k] = np.concatenate([x[k] for x in f], axis=1)
# af[k] = np.swapaxes(af[k], 0, 1)
return af
def sample_action(rng, action_probs, optimal_action, sample_gt_prob,
type='sample', combine_type='one_or_other'):
optimal_action_ = optimal_action/np.sum(optimal_action+0., 1, keepdims=True)
action_probs_ = action_probs/np.sum(action_probs+0.001, 1, keepdims=True)
batch_size = action_probs_.shape[0]
action = np.zeros((batch_size), dtype=np.int32)
action_sample_wt = np.zeros((batch_size), dtype=np.float32)
if combine_type == 'add':
sample_gt_prob_ = np.minimum(np.maximum(sample_gt_prob, 0.), 1.)
for i in range(batch_size):
if combine_type == 'one_or_other':
sample_gt = rng.rand() < sample_gt_prob
if sample_gt: distr_ = optimal_action_[i,:]*1.
else: distr_ = action_probs_[i,:]*1.
elif combine_type == 'add':
distr_ = optimal_action_[i,:]*sample_gt_prob_ + \
(1.-sample_gt_prob_)*action_probs_[i,:]
distr_ = distr_ / np.sum(distr_)
if type == 'sample':
action[i] = np.argmax(rng.multinomial(1, distr_, size=1))
elif type == 'argmax':
action[i] = np.argmax(distr_)
action_sample_wt[i] = action_probs_[i, action[i]] / distr_[action[i]]
return action, action_sample_wt
def train_step_custom_online_sampling(sess, train_op, global_step,
train_step_kwargs, mode='train'):
m = train_step_kwargs['m']
obj = train_step_kwargs['obj']
rng_data = train_step_kwargs['rng_data']
rng_action = train_step_kwargs['rng_action']
writer = train_step_kwargs['writer']
iters = train_step_kwargs['iters']
num_steps = train_step_kwargs['num_steps']
logdir = train_step_kwargs['logdir']
dagger_sample_bn_false = train_step_kwargs['dagger_sample_bn_false']
train_display_interval = train_step_kwargs['train_display_interval']
if 'outputs' not in m.train_ops:
m.train_ops['outputs'] = []
s_ops = m.summary_ops[mode]
val_additional_ops = []
# Print all variables here.
if False:
v = tf.get_collection(tf.GraphKeys.VARIABLES)
v_op = [_.value() for _ in v]
v_op_value = sess.run(v_op)
filter = lambda x, y: 'Adam' in x.name
# filter = lambda x, y: np.is_any_nan(y)
ind = [i for i, (_, __) in enumerate(zip(v, v_op_value)) if filter(_, __)]
v = [v[i] for i in ind]
v_op_value = [v_op_value[i] for i in ind]
for i in range(len(v)):
logging.info('XXXX: variable: %30s, is_any_nan: %5s, norm: %f.',
v[i].name, np.any(np.isnan(v_op_value[i])),
np.linalg.norm(v_op_value[i]))
tt = utils.Timer()
for i in range(iters):
tt.tic()
# Sample a room.
e = obj.sample_env(rng_data)
# Initialize the agent.
init_env_state = e.reset(rng_data)
# Get and process the common data.
input = e.get_common_data()
input = e.pre_common_data(input)
feed_dict = prepare_feed_dict(m.input_tensors['common'], input)
if dagger_sample_bn_false:
feed_dict[m.train_ops['batch_norm_is_training_op']] = False
common_data = sess.run(m.train_ops['common'], feed_dict=feed_dict)
states = []
state_features = []
state_targets = []
net_state_to_input = []
step_data_cache = []
executed_actions = []
rewards = []
action_sample_wts = []
states.append(init_env_state)
net_state = sess.run(m.train_ops['init_state'], feed_dict=feed_dict)
net_state = dict(zip(m.train_ops['state_names'], net_state))
net_state_to_input.append(net_state)
for j in range(num_steps):
f = e.get_features(states[j], j)
f = e.pre_features(f)
f.update(net_state)
f['step_number'] = np.ones((1,1,1), dtype=np.int32)*j
state_features.append(f)
feed_dict = prepare_feed_dict(m.input_tensors['step'], state_features[-1])
optimal_action = e.get_optimal_action(states[j], j)
for x, v in zip(m.train_ops['common'], common_data):
feed_dict[x] = v
if dagger_sample_bn_false:
feed_dict[m.train_ops['batch_norm_is_training_op']] = False
outs = sess.run([m.train_ops['step'], m.sample_gt_prob_op,
m.train_ops['step_data_cache'],
m.train_ops['updated_state'],
m.train_ops['outputs']], feed_dict=feed_dict)
action_probs = outs[0]
sample_gt_prob = outs[1]
step_data_cache.append(dict(zip(m.train_ops['step_data_cache'], outs[2])))
net_state = outs[3]
if hasattr(e, 'update_state'):
outputs = outs[4]
outputs = dict(zip(m.train_ops['output_names'], outputs))
e.update_state(outputs, j)
state_targets.append(e.get_targets(states[j], j))
if j < num_steps-1:
# Sample from action_probs and optimal action.
action, action_sample_wt = sample_action(
rng_action, action_probs, optimal_action, sample_gt_prob,
m.sample_action_type, m.sample_action_combine_type)
next_state, reward = e.take_action(states[j], action, j)
executed_actions.append(action)
states.append(next_state)
rewards.append(reward)
action_sample_wts.append(action_sample_wt)
net_state = dict(zip(m.train_ops['state_names'], net_state))
net_state_to_input.append(net_state)
# Concatenate things together for training.
rewards = np.array(rewards).T
action_sample_wts = np.array(action_sample_wts).T
executed_actions = np.array(executed_actions).T
all_state_targets = concat_state_x(state_targets, e.get_targets_name())
all_state_features = concat_state_x(state_features,
e.get_features_name()+['step_number'])
# all_state_net = concat_state_x(net_state_to_input,
# m.train_ops['state_names'])
all_step_data_cache = concat_state_x(step_data_cache,
m.train_ops['step_data_cache'])
dict_train = dict(input)
dict_train.update(all_state_features)
dict_train.update(all_state_targets)
# dict_train.update(all_state_net)
dict_train.update(net_state_to_input[0])
dict_train.update(all_step_data_cache)
dict_train.update({'rewards': rewards,
'action_sample_wts': action_sample_wts,
'executed_actions': executed_actions})
feed_dict = prepare_feed_dict(m.input_tensors['train'], dict_train)
for x in m.train_ops['step_data_cache']:
feed_dict[x] = all_step_data_cache[x]
if mode == 'train':
n_step = sess.run(global_step)
if np.mod(n_step, train_display_interval) == 0:
total_loss, np_global_step, summary, print_summary = sess.run(
[train_op, global_step, s_ops.summary_ops, s_ops.print_summary_ops],
feed_dict=feed_dict)
logging.error("")
else:
total_loss, np_global_step, summary = sess.run(
[train_op, global_step, s_ops.summary_ops], feed_dict=feed_dict)
if writer is not None and summary is not None:
writer.add_summary(summary, np_global_step)
should_stop = sess.run(m.should_stop_op)
if mode != 'train':
arop = [[] for j in range(len(s_ops.additional_return_ops))]
for j in range(len(s_ops.additional_return_ops)):
if s_ops.arop_summary_iters[j] < 0 or i < s_ops.arop_summary_iters[j]:
arop[j] = s_ops.additional_return_ops[j]
val = sess.run(arop, feed_dict=feed_dict)
val_additional_ops.append(val)
tt.toc(log_at=60, log_str='val timer {:d} / {:d}: '.format(i, iters),
type='time')
if mode != 'train':
# Write the default val summaries.
summary, print_summary, np_global_step = sess.run(
[s_ops.summary_ops, s_ops.print_summary_ops, global_step])
if writer is not None and summary is not None:
writer.add_summary(summary, np_global_step)
# write custom validation ops
val_summarys = []
val_additional_ops = zip(*val_additional_ops)
if len(s_ops.arop_eval_fns) > 0:
val_metric_summary = tf.summary.Summary()
for i in range(len(s_ops.arop_eval_fns)):
val_summary = None
if s_ops.arop_eval_fns[i] is not None:
val_summary = s_ops.arop_eval_fns[i](val_additional_ops[i],
np_global_step, logdir,
val_metric_summary,
s_ops.arop_summary_iters[i])
val_summarys.append(val_summary)
if writer is not None:
writer.add_summary(val_metric_summary, np_global_step)
# Return the additional val_ops
total_loss = (val_additional_ops, val_summarys)
should_stop = None
return total_loss, should_stop
def train_step_custom_v2(sess, train_op, global_step, train_step_kwargs,
mode='train'):
m = train_step_kwargs['m']
obj = train_step_kwargs['obj']
rng = train_step_kwargs['rng']
writer = train_step_kwargs['writer']
iters = train_step_kwargs['iters']
logdir = train_step_kwargs['logdir']
train_display_interval = train_step_kwargs['train_display_interval']
s_ops = m.summary_ops[mode]
val_additional_ops = []
# Print all variables here.
if False:
v = tf.get_collection(tf.GraphKeys.VARIABLES)
v_op = [_.value() for _ in v]
v_op_value = sess.run(v_op)
filter = lambda x, y: 'Adam' in x.name
# filter = lambda x, y: np.is_any_nan(y)
ind = [i for i, (_, __) in enumerate(zip(v, v_op_value)) if filter(_, __)]
v = [v[i] for i in ind]
v_op_value = [v_op_value[i] for i in ind]
for i in range(len(v)):
logging.info('XXXX: variable: %30s, is_any_nan: %5s, norm: %f.',
v[i].name, np.any(np.isnan(v_op_value[i])),
np.linalg.norm(v_op_value[i]))
tt = utils.Timer()
for i in range(iters):
tt.tic()
e = obj.sample_env(rng)
rngs = e.gen_rng(rng)
input_data = e.gen_data(*rngs)
input_data = e.pre_data(input_data)
feed_dict = prepare_feed_dict(m.input_tensors, input_data)
if mode == 'train':
n_step = sess.run(global_step)
if np.mod(n_step, train_display_interval) == 0:
total_loss, np_global_step, summary, print_summary = sess.run(
[train_op, global_step, s_ops.summary_ops, s_ops.print_summary_ops],
feed_dict=feed_dict)
else:
total_loss, np_global_step, summary = sess.run(
[train_op, global_step, s_ops.summary_ops],
feed_dict=feed_dict)
if writer is not None and summary is not None:
writer.add_summary(summary, np_global_step)
should_stop = sess.run(m.should_stop_op)
if mode != 'train':
arop = [[] for j in range(len(s_ops.additional_return_ops))]
for j in range(len(s_ops.additional_return_ops)):
if s_ops.arop_summary_iters[j] < 0 or i < s_ops.arop_summary_iters[j]:
arop[j] = s_ops.additional_return_ops[j]
val = sess.run(arop, feed_dict=feed_dict)
val_additional_ops.append(val)
tt.toc(log_at=60, log_str='val timer {:d} / {:d}: '.format(i, iters),
type='time')
if mode != 'train':
# Write the default val summaries.
summary, print_summary, np_global_step = sess.run(
[s_ops.summary_ops, s_ops.print_summary_ops, global_step])
if writer is not None and summary is not None:
writer.add_summary(summary, np_global_step)
# write custom validation ops
val_summarys = []
val_additional_ops = zip(*val_additional_ops)
if len(s_ops.arop_eval_fns) > 0:
val_metric_summary = tf.summary.Summary()
for i in range(len(s_ops.arop_eval_fns)):
val_summary = None
if s_ops.arop_eval_fns[i] is not None:
val_summary = s_ops.arop_eval_fns[i](val_additional_ops[i],
np_global_step, logdir,
val_metric_summary,
s_ops.arop_summary_iters[i])
val_summarys.append(val_summary)
if writer is not None:
writer.add_summary(val_metric_summary, np_global_step)
# Return the additional val_ops
total_loss = (val_additional_ops, val_summarys)
should_stop = None
return total_loss, should_stop
def train_step_custom(sess, train_op, global_step, train_step_kwargs,
mode='train'):
m = train_step_kwargs['m']
params = train_step_kwargs['params']
rng = train_step_kwargs['rng']
writer = train_step_kwargs['writer']
iters = train_step_kwargs['iters']
gen_rng = train_step_kwargs['gen_rng']
logdir = train_step_kwargs['logdir']
gen_data = train_step_kwargs['gen_data']
pre_data = train_step_kwargs['pre_data']
train_display_interval = train_step_kwargs['train_display_interval']
val_additional_ops = []
# Print all variables here.
if False:
v = tf.get_collection(tf.GraphKeys.VARIABLES)
for _ in v:
val = sess.run(_.value())
logging.info('variable: %30s, is_any_nan: %5s, norm: %f.', _.name,
np.any(np.isnan(val)), np.linalg.norm(val))
for i in range(iters):
rngs = gen_rng(params, rng)
input_data = gen_data(params, *rngs)
input_data = pre_data(params, input_data)
feed_dict = prepare_feed_dict(m.input_tensors, input_data)
if mode == 'train':
n_step = sess.run(global_step)
if np.mod(n_step, train_display_interval) == 0:
total_loss, np_global_step, summary, print_summary = sess.run(
[train_op, global_step, m.summary_op[mode], m.print_summary_op[mode]],
feed_dict=feed_dict)
else:
total_loss, np_global_step, summary = sess.run(
[train_op, global_step, m.summary_op[mode]],
feed_dict=feed_dict)
if writer is not None:
writer.add_summary(summary, np_global_step)
should_stop = sess.run(m.should_stop_op)
if mode == 'val':
val = sess.run(m.agg_update_op[mode] + m.additional_return_op[mode],
feed_dict=feed_dict)
val_additional_ops.append(val[len(m.agg_update_op[mode]):])
if mode == 'val':
summary, print_summary, np_global_step = sess.run(
[m.summary_op[mode], m.print_summary_op[mode], global_step])
if writer is not None:
writer.add_summary(summary, np_global_step)
sess.run([m.agg_reset_op[mode]])
# write custom validation ops
if m.eval_metrics_fn[mode] is not None:
val_metric_summary = m.eval_metrics_fn[mode](val_additional_ops,
np_global_step, logdir)
if writer is not None:
writer.add_summary(val_metric_summary, np_global_step)
total_loss = val_additional_ops
should_stop = None
return total_loss, should_stop
def setup_training(loss_op, initial_learning_rate, steps_per_decay,
learning_rate_decay, momentum, max_steps,
sync=False, adjust_lr_sync=True,
num_workers=1, replica_id=0, vars_to_optimize=None,
clip_gradient_norm=0, typ=None, momentum2=0.999,
adam_eps=1e-8):
if sync and adjust_lr_sync:
initial_learning_rate = initial_learning_rate * num_workers
max_steps = np.int(max_steps / num_workers)
steps_per_decay = np.int(steps_per_decay / num_workers)
global_step_op = slim.get_or_create_global_step()
lr_op = tf.train.exponential_decay(initial_learning_rate,
global_step_op, steps_per_decay, learning_rate_decay, staircase=True)
if typ == 'sgd':
optimizer = tf.train.MomentumOptimizer(lr_op, momentum)
elif typ == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate=lr_op, beta1=momentum,
beta2=momentum2, epsilon=adam_eps)
if sync:
sync_optimizer = tf.train.SyncReplicasOptimizer(optimizer,
replicas_to_aggregate=num_workers,
replica_id=replica_id,
total_num_replicas=num_workers)
train_op = slim.learning.create_train_op(loss_op, sync_optimizer,
variables_to_train=vars_to_optimize,
clip_gradient_norm=clip_gradient_norm)
else:
sync_optimizer = None
train_op = slim.learning.create_train_op(loss_op, optimizer,
variables_to_train=vars_to_optimize,
clip_gradient_norm=clip_gradient_norm)
should_stop_op = tf.greater_equal(global_step_op, max_steps)
return lr_op, global_step_op, train_op, should_stop_op, optimizer, sync_optimizer
def add_value_to_summary(metric_summary, tag, val, log=True, tag_str=None):
"""Adds a scalar summary to the summary object. Optionally also logs to
logging."""
new_value = metric_summary.value.add();
new_value.tag = tag
new_value.simple_value = val
if log:
if tag_str is None:
tag_str = tag + '%f'
logging.info(tag_str, val)
def add_scalar_summary_op(tensor, name=None,
summary_key='summaries', print_summary_key='print_summaries', prefix=''):
collections = []
op = tf.summary.scalar(name, tensor, collections=collections)
if summary_key != print_summary_key:
tf.add_to_collection(summary_key, op)
op = tf.Print(op, [tensor], ' {:-<25s}: '.format(name) + prefix)
tf.add_to_collection(print_summary_key, op)
return op
def setup_inputs(inputs):
input_tensors = {}
input_shapes = {}
for (name, typ, sz) in inputs:
_ = tf.placeholder(typ, shape=sz, name=name)
input_tensors[name] = _
input_shapes[name] = sz
return input_tensors, input_shapes
def prepare_feed_dict(input_tensors, inputs):
feed_dict = {}
for n in input_tensors.keys():
feed_dict[input_tensors[n]] = inputs[n].astype(input_tensors[n].dtype.as_numpy_dtype)
return feed_dict
def simple_add_summaries(summarize_ops, summarize_names,
summary_key='summaries',
print_summary_key='print_summaries', prefix=''):
for op, name, in zip(summarize_ops, summarize_names):
add_scalar_summary_op(op, name, summary_key, print_summary_key, prefix)
summary_op = tf.summary.merge_all(summary_key)
print_summary_op = tf.summary.merge_all(print_summary_key)
return summary_op, print_summary_op
def add_summary_ops(m, summarize_ops, summarize_names, to_aggregate=None,
summary_key='summaries',
print_summary_key='print_summaries', prefix=''):
if type(to_aggregate) != list:
to_aggregate = [to_aggregate for _ in summarize_ops]
# set up aggregating metrics
if np.any(to_aggregate):
agg_ops = []
for op, name, to_agg in zip(summarize_ops, summarize_names, to_aggregate):
if to_agg:
# agg_ops.append(slim.metrics.streaming_mean(op, return_reset_op=True))
agg_ops.append(tf.contrib.metrics.streaming_mean(op))
# agg_ops.append(tf.contrib.metrics.streaming_mean(op, return_reset_op=True))
else:
agg_ops.append([None, None, None])
# agg_values_op, agg_update_op, agg_reset_op = zip(*agg_ops)
# agg_update_op = [x for x in agg_update_op if x is not None]
# agg_reset_op = [x for x in agg_reset_op if x is not None]
agg_values_op, agg_update_op = zip(*agg_ops)
agg_update_op = [x for x in agg_update_op if x is not None]
agg_reset_op = [tf.no_op()]
else:
agg_values_op = [None for _ in to_aggregate]
agg_update_op = [tf.no_op()]
agg_reset_op = [tf.no_op()]
for op, name, to_agg, agg_op in zip(summarize_ops, summarize_names, to_aggregate, agg_values_op):
if to_agg:
add_scalar_summary_op(agg_op, name, summary_key, print_summary_key, prefix)
else:
add_scalar_summary_op(op, name, summary_key, print_summary_key, prefix)
summary_op = tf.summary.merge_all(summary_key)
print_summary_op = tf.summary.merge_all(print_summary_key)
return summary_op, print_summary_op, agg_update_op, agg_reset_op
def accum_val_ops(outputs, names, global_step, output_dir, metric_summary, N):
"""Processes the collected outputs to compute AP for action prediction.
Args:
outputs : List of scalar ops to summarize.
names : Name of the scalar ops.
global_step : global_step.
output_dir : where to store results.
metric_summary : summary object to add summaries to.
N : number of outputs to process.
"""
outs = []
if N >= 0:
outputs = outputs[:N]
for i in range(len(outputs[0])):
scalar = np.array(map(lambda x: x[i], outputs))
assert(scalar.ndim == 1)
add_value_to_summary(metric_summary, names[i], np.mean(scalar),
tag_str='{:>27s}: [{:s}]: %f'.format(names[i], ''))
outs.append(np.mean(scalar))
return outs
def get_default_summary_ops():
return utils.Foo(summary_ops=None, print_summary_ops=None,
additional_return_ops=[], arop_summary_iters=[],
arop_eval_fns=[])
def simple_summaries(summarize_ops, summarize_names, mode, to_aggregate=False,
scope_name='summary'):
if type(to_aggregate) != list:
to_aggregate = [to_aggregate for _ in summarize_ops]
summary_key = '{:s}_summaries'.format(mode)
print_summary_key = '{:s}_print_summaries'.format(mode)
prefix=' [{:s}]: '.format(mode)
# Default ops for things that dont need to be aggregated.
if not np.all(to_aggregate):
for op, name, to_agg in zip(summarize_ops, summarize_names, to_aggregate):
if not to_agg:
add_scalar_summary_op(op, name, summary_key, print_summary_key, prefix)
summary_ops = tf.summary.merge_all(summary_key)
print_summary_ops = tf.summary.merge_all(print_summary_key)
else:
summary_ops = tf.no_op()
print_summary_ops = tf.no_op()
# Default ops for things that dont need to be aggregated.
if np.any(to_aggregate):
additional_return_ops = [[summarize_ops[i]
for i, x in enumerate(to_aggregate )if x]]
arop_summary_iters = [-1]
s_names = ['{:s}/{:s}'.format(scope_name, summarize_names[i])
for i, x in enumerate(to_aggregate) if x]
fn = lambda outputs, global_step, output_dir, metric_summary, N: \
accum_val_ops(outputs, s_names, global_step, output_dir, metric_summary,
N)
arop_eval_fns = [fn]
else:
additional_return_ops = []
arop_summary_iters = []
arop_eval_fns = []
return summary_ops, print_summary_ops, additional_return_ops, \
arop_summary_iters, arop_eval_fns