|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Multi-head BERT encoder network with classification heads. |
|
|
|
Includes configurations and instantiation methods. |
|
""" |
|
from typing import List, Optional, Text |
|
|
|
import dataclasses |
|
import tensorflow as tf |
|
|
|
from official.modeling import tf_utils |
|
from official.modeling.hyperparams import base_config |
|
from official.modeling.hyperparams import config_definitions as cfg |
|
from official.nlp.configs import encoders |
|
from official.nlp.modeling import layers |
|
from official.nlp.modeling.models import bert_pretrainer |
|
|
|
|
|
@dataclasses.dataclass |
|
class ClsHeadConfig(base_config.Config): |
|
inner_dim: int = 0 |
|
num_classes: int = 2 |
|
activation: Optional[Text] = "tanh" |
|
dropout_rate: float = 0.0 |
|
cls_token_idx: int = 0 |
|
name: Optional[Text] = None |
|
|
|
|
|
@dataclasses.dataclass |
|
class BertPretrainerConfig(base_config.Config): |
|
"""BERT encoder configuration.""" |
|
num_masked_tokens: int = 76 |
|
encoder: encoders.TransformerEncoderConfig = ( |
|
encoders.TransformerEncoderConfig()) |
|
cls_heads: List[ClsHeadConfig] = dataclasses.field(default_factory=list) |
|
|
|
|
|
def instantiate_classification_heads_from_cfgs( |
|
cls_head_configs: List[ClsHeadConfig]) -> List[layers.ClassificationHead]: |
|
return [ |
|
layers.ClassificationHead(**cfg.as_dict()) for cfg in cls_head_configs |
|
] if cls_head_configs else [] |
|
|
|
|
|
def instantiate_bertpretrainer_from_cfg( |
|
config: BertPretrainerConfig, |
|
encoder_network: Optional[tf.keras.Model] = None |
|
) -> bert_pretrainer.BertPretrainerV2: |
|
"""Instantiates a BertPretrainer from the config.""" |
|
encoder_cfg = config.encoder |
|
if encoder_network is None: |
|
encoder_network = encoders.instantiate_encoder_from_cfg(encoder_cfg) |
|
return bert_pretrainer.BertPretrainerV2( |
|
config.num_masked_tokens, |
|
mlm_activation=tf_utils.get_activation(encoder_cfg.hidden_activation), |
|
mlm_initializer=tf.keras.initializers.TruncatedNormal( |
|
stddev=encoder_cfg.initializer_range), |
|
encoder_network=encoder_network, |
|
classification_heads=instantiate_classification_heads_from_cfgs( |
|
config.cls_heads)) |
|
|
|
|
|
@dataclasses.dataclass |
|
class BertPretrainDataConfig(cfg.DataConfig): |
|
"""Data config for BERT pretraining task (tasks/masked_lm).""" |
|
input_path: str = "" |
|
global_batch_size: int = 512 |
|
is_training: bool = True |
|
seq_length: int = 512 |
|
max_predictions_per_seq: int = 76 |
|
use_next_sentence_label: bool = True |
|
use_position_id: bool = False |
|
|
|
|
|
@dataclasses.dataclass |
|
class BertPretrainEvalDataConfig(BertPretrainDataConfig): |
|
"""Data config for the eval set in BERT pretraining task (tasks/masked_lm).""" |
|
input_path: str = "" |
|
global_batch_size: int = 512 |
|
is_training: bool = False |
|
|
|
|
|
@dataclasses.dataclass |
|
class SentencePredictionDataConfig(cfg.DataConfig): |
|
"""Data config for sentence prediction task (tasks/sentence_prediction).""" |
|
input_path: str = "" |
|
global_batch_size: int = 32 |
|
is_training: bool = True |
|
seq_length: int = 128 |
|
|
|
|
|
@dataclasses.dataclass |
|
class SentencePredictionDevDataConfig(cfg.DataConfig): |
|
"""Dev Data config for sentence prediction (tasks/sentence_prediction).""" |
|
input_path: str = "" |
|
global_batch_size: int = 32 |
|
is_training: bool = False |
|
seq_length: int = 128 |
|
drop_remainder: bool = False |
|
|
|
|
|
@dataclasses.dataclass |
|
class QADataConfig(cfg.DataConfig): |
|
"""Data config for question answering task (tasks/question_answering).""" |
|
input_path: str = "" |
|
global_batch_size: int = 48 |
|
is_training: bool = True |
|
seq_length: int = 384 |
|
|
|
|
|
@dataclasses.dataclass |
|
class QADevDataConfig(cfg.DataConfig): |
|
"""Dev Data config for queston answering (tasks/question_answering).""" |
|
input_path: str = "" |
|
global_batch_size: int = 48 |
|
is_training: bool = False |
|
seq_length: int = 384 |
|
drop_remainder: bool = False |
|
|
|
|
|
@dataclasses.dataclass |
|
class TaggingDataConfig(cfg.DataConfig): |
|
"""Data config for tagging (tasks/tagging).""" |
|
input_path: str = "" |
|
global_batch_size: int = 48 |
|
is_training: bool = True |
|
seq_length: int = 384 |
|
|
|
|
|
@dataclasses.dataclass |
|
class TaggingDevDataConfig(cfg.DataConfig): |
|
"""Dev Data config for tagging (tasks/tagging).""" |
|
input_path: str = "" |
|
global_batch_size: int = 48 |
|
is_training: bool = False |
|
seq_length: int = 384 |
|
drop_remainder: bool = False |
|
|