|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Miscellaneous functions that can be called by models.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numbers |
|
|
|
from absl import logging |
|
import tensorflow as tf |
|
|
|
from tensorflow.python.util import nest |
|
|
|
|
|
|
|
def past_stop_threshold(stop_threshold, eval_metric): |
|
"""Return a boolean representing whether a model should be stopped. |
|
|
|
Args: |
|
stop_threshold: float, the threshold above which a model should stop |
|
training. |
|
eval_metric: float, the current value of the relevant metric to check. |
|
|
|
Returns: |
|
True if training should stop, False otherwise. |
|
|
|
Raises: |
|
ValueError: if either stop_threshold or eval_metric is not a number |
|
""" |
|
if stop_threshold is None: |
|
return False |
|
|
|
if not isinstance(stop_threshold, numbers.Number): |
|
raise ValueError("Threshold for checking stop conditions must be a number.") |
|
if not isinstance(eval_metric, numbers.Number): |
|
raise ValueError("Eval metric being checked against stop conditions " |
|
"must be a number.") |
|
|
|
if eval_metric >= stop_threshold: |
|
logging.info("Stop threshold of {} was passed with metric value {}.".format( |
|
stop_threshold, eval_metric)) |
|
return True |
|
|
|
return False |
|
|
|
|
|
def generate_synthetic_data( |
|
input_shape, input_value=0, input_dtype=None, label_shape=None, |
|
label_value=0, label_dtype=None): |
|
"""Create a repeating dataset with constant values. |
|
|
|
Args: |
|
input_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of |
|
the input data. |
|
input_value: Value of each input element. |
|
input_dtype: Input dtype. If None, will be inferred by the input value. |
|
label_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of |
|
the label data. |
|
label_value: Value of each input element. |
|
label_dtype: Input dtype. If None, will be inferred by the target value. |
|
|
|
Returns: |
|
Dataset of tensors or tuples of tensors (if label_shape is set). |
|
""" |
|
|
|
element = input_element = nest.map_structure( |
|
lambda s: tf.constant(input_value, input_dtype, s), input_shape) |
|
|
|
if label_shape: |
|
label_element = nest.map_structure( |
|
lambda s: tf.constant(label_value, label_dtype, s), label_shape) |
|
element = (input_element, label_element) |
|
|
|
return tf.data.Dataset.from_tensors(element).repeat() |
|
|
|
|
|
def apply_clean(flags_obj): |
|
if flags_obj.clean and tf.io.gfile.exists(flags_obj.model_dir): |
|
logging.info("--clean flag set. Removing existing model dir:" |
|
" {}".format(flags_obj.model_dir)) |
|
tf.io.gfile.rmtree(flags_obj.model_dir) |
|
|