Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
import logging | |
from PIL import Image | |
from tensorflow.keras.preprocessing import image as keras_image | |
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input as resnet_preprocess | |
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input as vgg_preprocess | |
import scipy.fftpack | |
import time | |
import clip | |
import torch | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
# Load models | |
resnet_model = ResNet50(weights='imagenet', include_top=False, pooling='avg') | |
vgg_model = VGG16(weights='imagenet', include_top=False, pooling='avg') | |
clip_model, preprocess_clip = clip.load("ViT-B/32", device="cpu") | |
# Preprocess function | |
def preprocess_img(img_path, target_size=(224, 224), preprocess_func=resnet_preprocess): | |
start_time = time.time() | |
img = keras_image.load_img(img_path, target_size=target_size) | |
img_array = keras_image.img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = preprocess_func(img_array) | |
logging.info(f"Image preprocessed in {time.time() - start_time:.4f} seconds") | |
return img_array | |
# Feature extraction function | |
def extract_features(img_path, model, preprocess_func): | |
img_array = preprocess_img(img_path, preprocess_func=preprocess_func) | |
start_time = time.time() | |
features = model.predict(img_array) | |
logging.info(f"Features extracted in {time.time() - start_time:.4f} seconds") | |
return features.flatten() | |
# Calculate cosine similarity | |
def cosine_similarity(vec1, vec2): | |
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) | |
# pHash related functions | |
def phashstr(image, hash_size=8, highfreq_factor=4): | |
img_size = hash_size * highfreq_factor | |
image = image.convert('L').resize((img_size, img_size), Image.Resampling.LANCZOS) | |
pixels = np.asarray(image) | |
dct = scipy.fftpack.dct(scipy.fftpack.dct(pixels, axis=0), axis=1) | |
dctlowfreq = dct[:hash_size, :hash_size] | |
med = np.median(dctlowfreq) | |
diff = dctlowfreq > med | |
return _binary_array_to_hex(diff.flatten()) | |
def _binary_array_to_hex(arr): | |
h = 0 | |
s = [] | |
for i, v in enumerate(arr): | |
if v: | |
h += 2**(i % 8) | |
if (i % 8) == 7: | |
s.append(hex(h)[2:].rjust(2, '0')) | |
h = 0 | |
return ''.join(s) | |
def hamming_distance(hash1, hash2): | |
if len(hash1) != len(hash2): | |
raise ValueError("Hashes must be of the same length") | |
return sum(c1 != c2 for c1, c2 in zip(hash1, hash2)) | |
def hamming_to_similarity(distance, hash_length): | |
return (1 - distance / hash_length) * 100 | |
# CLIP related functions | |
def extract_clip_features(image_path, model, preprocess): | |
image = preprocess(Image.open(image_path)).unsqueeze(0).to("cpu") | |
with torch.no_grad(): | |
features = model.encode_image(image) | |
return features.cpu().numpy().flatten() | |
# Main function | |
def compare_images(image1, image2, method): | |
similarity = None | |
start_time = time.time() | |
if method == 'pHash': | |
img1 = Image.open(image1) | |
img2 = Image.open(image2) | |
hash1 = phashstr(img1) | |
hash2 = phashstr(img2) | |
distance = hamming_distance(hash1, hash2) | |
similarity = hamming_to_similarity(distance, len(hash1) * 4) | |
elif method == 'ResNet50': | |
features1 = extract_features(image1, resnet_model, resnet_preprocess) | |
features2 = extract_features(image2, resnet_model, resnet_preprocess) | |
similarity = cosine_similarity(features1, features2) | |
elif method == 'VGG16': | |
features1 = extract_features(image1, vgg_model, vgg_preprocess) | |
features2 = extract_features(image2, vgg_model, vgg_preprocess) | |
similarity = cosine_similarity(features1, features2) | |
elif method == 'CLIP': | |
features1 = extract_clip_features(image1, clip_model, preprocess_clip) | |
features2 = extract_clip_features(image2, clip_model, preprocess_clip) | |
similarity = cosine_similarity(features1, features2) | |
logging.info(f"Image comparison using {method} completed in {time.time() - start_time:.4f} seconds") | |
return similarity | |
# Gradio interface | |
demo = gr.Interface( | |
fn=compare_images, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload First Image"), | |
gr.Image(type="filepath", label="Upload Second Image"), | |
gr.Radio(["pHash", "ResNet50", "VGG16", "CLIP"], label="Select Comparison Method") | |
], | |
outputs=gr.Textbox(label="Similarity"), | |
title="Image Similarity Comparison", | |
description="Upload two images and select the comparison method.", | |
examples=[ | |
["Snipaste_2024-05-31_16-18-31.jpg", "Snipaste_2024-05-31_16-18-52.jpg"], | |
["example1.png", "example2.png"] | |
] | |
) | |
demo.launch() | |