|
|
|
""" |
|
Credit to Derek Thomas, derek@huggingface.co |
|
""" |
|
|
|
import subprocess |
|
|
|
|
|
|
|
import logging |
|
from pathlib import Path |
|
from time import perf_counter |
|
|
|
import gradio as gr |
|
from jinja2 import Environment, FileSystemLoader |
|
import numpy as np |
|
from sentence_transformers import CrossEncoder |
|
|
|
from backend.query_llm import generate_hf, generate_openai |
|
from backend.semantic_search import table, retriever |
|
|
|
VECTOR_COLUMN_NAME = "vector" |
|
TEXT_COLUMN_NAME = "text" |
|
|
|
proj_dir = Path(__file__).parent |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) |
|
|
|
|
|
template = env.get_template('template.j2') |
|
template_html = env.get_template('template_html.j2') |
|
|
|
|
|
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') |
|
|
|
|
|
examples = ['My transhipment cargo is missing', |
|
'What are benefits of the AEO Scheme and eligibility criteria?', |
|
'What are penalties for customs offences? ', ] |
|
|
|
|
|
def add_text(history, text): |
|
history = [] if history is None else history |
|
history = history + [(text, None)] |
|
return history, gr.Textbox(value="", interactive=False) |
|
|
|
|
|
def bot(history, api_kind): |
|
top_rerank = 15 |
|
top_k_rank = 5 |
|
query = history[-1][0] |
|
print('history[-1][0]',history[-1][0]) |
|
|
|
if not query: |
|
gr.Warning("Please submit a non-empty string as a prompt") |
|
raise ValueError("Empty string was submitted") |
|
|
|
logger.warning('Retrieving documents...') |
|
|
|
document_start = perf_counter() |
|
|
|
query_vec = retriever.encode(query) |
|
print(query) |
|
query_vec_flat = [arr.flatten() for arr in query_vec] |
|
logger.warning(f'Finished query vec') |
|
|
|
|
|
|
|
|
|
logger.warning(f'Finished search') |
|
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() |
|
documents = [doc[TEXT_COLUMN_NAME] for doc in documents] |
|
logger.warning(f'start cross encoder {len(documents)}') |
|
|
|
query_doc_pair = [[query, doc] for doc in documents] |
|
cross_scores = cross_encoder.predict(query_doc_pair) |
|
sim_scores_argsort = list(reversed(np.argsort(cross_scores))) |
|
logger.warning(f'Finished cross encoder {len(documents)}') |
|
|
|
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] |
|
logger.warning(f'num documents {len(documents)}') |
|
|
|
document_time = perf_counter() - document_start |
|
logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') |
|
|
|
|
|
prompt = template.render(documents=documents, query=query) |
|
prompt_html = template_html.render(documents=documents, query=query) |
|
|
|
if api_kind == "HuggingFace": |
|
generate_fn = generate_hf |
|
elif api_kind == "OpenAI": |
|
generate_fn = generate_openai |
|
elif api_kind is None: |
|
gr.Warning("API name was not provided") |
|
raise ValueError("API name was not provided") |
|
else: |
|
gr.Warning(f"API {api_kind} is not supported") |
|
raise ValueError(f"API {api_kind} is not supported") |
|
try: |
|
count_tokens = lambda text: len([token.strip() for token in text.split() if token.strip()]) |
|
print(prompt_html,'token count is',count_tokens(prompt_html)) |
|
history[-1][1] = "" |
|
for character in generate_fn(prompt, history[:-1]): |
|
history[-1][1] = character |
|
yield history, prompt_html |
|
except Exception as e: |
|
print('An unexpected error occurred during generation:', str(e)) |
|
yield f"An unexpected error occurred during generation: {str(e)}" |
|
|
|
with gr.Blocks(theme='WeixuanYuan/Soft_dark') as demo: |
|
|
|
gr.HTML(value=""" |
|
<div style="display: flex; align-items: center; justify-content: space-between;"> |
|
<h1 style="color: #008000">ADWITIYA - <span style="color: #008000">Customs Manual Chatbot</span></h1> |
|
<img src='logo.png' alt="Chatbot" width="50" height="50" /> |
|
</div> |
|
""", elem_id="heading") |
|
|
|
|
|
gr.HTML(value="""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by National Customs Targeting Center using Open source LLMs.(Dedicated to 75th Batch IRS Probationers)</p>""", elem_id="description") |
|
|
|
chatbot = gr.Chatbot( |
|
[], |
|
elem_id="chatbot", |
|
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', |
|
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), |
|
bubble_full_width=False, |
|
show_copy_button=True, |
|
show_share_button=True, |
|
) |
|
|
|
with gr.Row(): |
|
txt = gr.Textbox( |
|
scale=3, |
|
show_label=False, |
|
placeholder="Enter text and press enter", |
|
container=False, |
|
) |
|
txt_btn = gr.Button(value="Submit text", scale=1) |
|
|
|
api_kind = gr.Radio(choices=["HuggingFace"], value="HuggingFace") |
|
|
|
prompt_html = gr.HTML() |
|
try: |
|
|
|
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( |
|
bot, [chatbot, api_kind], [chatbot, prompt_html]) |
|
except Exception as e: |
|
print ('Exception txt btn click ' ,str(e)) |
|
|
|
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) |
|
try: |
|
|
|
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( |
|
bot, [chatbot, api_kind], [chatbot, prompt_html]) |
|
except Exception as e: |
|
print ('Exception ' ,str(e)) |
|
|
|
|
|
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) |
|
|
|
|
|
gr.Examples(examples, txt) |
|
|
|
demo.queue() |
|
demo.launch(debug=True) |
|
|