AdvaitBERT-AI_Explanability
/
models
/research
/learned_optimizer
/optimizer
/learning_rate_schedule.py
# Copyright 2017 Google, Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""A trainable optimizer that learns a learning rate schedule.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
from learned_optimizer.optimizer import trainable_optimizer | |
class LearningRateSchedule(trainable_optimizer.TrainableOptimizer): | |
"""Learns a learning rate schedule over a fixed number of iterations.""" | |
def __init__(self, initial_rate=0.0, n_steps=1000, **kwargs): | |
"""Initializes the learning rates.""" | |
self.max_index = tf.constant(n_steps-1, dtype=tf.int32) | |
with tf.variable_scope(trainable_optimizer.OPTIMIZER_SCOPE): | |
initializer = tf.constant_initializer(initial_rate) | |
self.learning_rates = tf.get_variable("learning_rates", | |
shape=([n_steps,]), | |
initializer=initializer) | |
super(LearningRateSchedule, self).__init__("LRS", ["itr"], **kwargs) | |
def _initialize_state(self, var): | |
"""Return a dictionary mapping names of state variables to their values.""" | |
return { | |
"itr": tf.constant(0, dtype=tf.int32), | |
} | |
def _compute_update(self, param, grad, state): | |
"""Compute updates of parameters.""" | |
# get the learning rate at the current index, if the index | |
# is greater than the number of available learning rates, | |
# use the last one | |
index = tf.minimum(state["itr"], self.max_index) | |
learning_rate = tf.gather(self.learning_rates, index) | |
# update the parameters: parameter - learning_rate * gradient | |
updated_param = param - tf.scalar_mul(learning_rate, grad) | |
return updated_param, {"itr": state["itr"] + 1} | |