|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Neural Network Image Compression Encoder. |
|
|
|
Compresses an image to a binarized numpy array. The image must be padded to a |
|
multiple of 32 pixels in height and width. |
|
|
|
Example usage: |
|
python encoder.py --input_image=/your/image/here.png \ |
|
--output_codes=output_codes.pkl --iteration=15 --model=residual_gru.pb |
|
""" |
|
import io |
|
import os |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
tf.flags.DEFINE_string('input_image', None, 'Location of input image. We rely ' |
|
'on tf.image to decode the image, so only PNG and JPEG ' |
|
'formats are currently supported.') |
|
tf.flags.DEFINE_integer('iteration', 15, 'Quality level for encoding image. ' |
|
'Must be between 0 and 15 inclusive.') |
|
tf.flags.DEFINE_string('output_codes', None, 'File to save output encoding.') |
|
tf.flags.DEFINE_string('model', None, 'Location of compression model.') |
|
|
|
FLAGS = tf.flags.FLAGS |
|
|
|
|
|
def get_output_tensor_names(): |
|
name_list = ['GruBinarizer/SignBinarizer/Sign:0'] |
|
for i in range(1, 16): |
|
name_list.append('GruBinarizer/SignBinarizer/Sign_{}:0'.format(i)) |
|
return name_list |
|
|
|
|
|
def main(_): |
|
if (FLAGS.input_image is None or FLAGS.output_codes is None or |
|
FLAGS.model is None): |
|
print('\nUsage: python encoder.py --input_image=/your/image/here.png ' |
|
'--output_codes=output_codes.pkl --iteration=15 ' |
|
'--model=residual_gru.pb\n\n') |
|
return |
|
|
|
if FLAGS.iteration < 0 or FLAGS.iteration > 15: |
|
print('\n--iteration must be between 0 and 15 inclusive.\n') |
|
return |
|
|
|
with tf.gfile.FastGFile(FLAGS.input_image, 'rb') as input_image: |
|
input_image_str = input_image.read() |
|
|
|
with tf.Graph().as_default() as graph: |
|
|
|
with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file: |
|
graph_def = tf.GraphDef() |
|
graph_def.ParseFromString(model_file.read()) |
|
_ = tf.import_graph_def(graph_def, name='') |
|
|
|
input_tensor = graph.get_tensor_by_name('Placeholder:0') |
|
outputs = [graph.get_tensor_by_name(name) for name in |
|
get_output_tensor_names()] |
|
|
|
input_image = tf.placeholder(tf.string) |
|
_, ext = os.path.splitext(FLAGS.input_image) |
|
if ext == '.png': |
|
decoded_image = tf.image.decode_png(input_image, channels=3) |
|
elif ext == '.jpeg' or ext == '.jpg': |
|
decoded_image = tf.image.decode_jpeg(input_image, channels=3) |
|
else: |
|
assert False, 'Unsupported file format {}'.format(ext) |
|
decoded_image = tf.expand_dims(decoded_image, 0) |
|
|
|
with tf.Session(graph=graph) as sess: |
|
img_array = sess.run(decoded_image, feed_dict={input_image: |
|
input_image_str}) |
|
results = sess.run(outputs, feed_dict={input_tensor: img_array}) |
|
|
|
results = results[0:FLAGS.iteration + 1] |
|
int_codes = np.asarray([x.astype(np.int8) for x in results]) |
|
|
|
|
|
int_codes = (int_codes + 1)//2 |
|
export = np.packbits(int_codes.reshape(-1)) |
|
|
|
output = io.BytesIO() |
|
np.savez_compressed(output, shape=int_codes.shape, codes=export) |
|
with tf.gfile.FastGFile(FLAGS.output_codes, 'w') as code_file: |
|
code_file.write(output.getvalue()) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.app.run() |
|
|