NCTCMumbai's picture
Upload 2583 files
18ddfe2 verified
raw
history blame
15.3 kB
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.utils.shape_utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from object_detection.utils import shape_utils
from object_detection.utils import test_case
class UtilTest(test_case.TestCase):
def test_pad_tensor_using_integer_input(self):
print('........pad tensor using interger input.')
def graph_fn():
t1 = tf.constant([1], dtype=tf.int32)
pad_t1 = shape_utils.pad_tensor(t1, 2)
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
pad_t2 = shape_utils.pad_tensor(t2, 2)
return pad_t1, pad_t2
pad_t1_result, pad_t2_result = self.execute(graph_fn, [])
self.assertAllEqual([1, 0], pad_t1_result)
self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result)
def test_pad_tensor_using_tensor_input(self):
def graph_fn():
t1 = tf.constant([1], dtype=tf.int32)
pad_t1 = shape_utils.pad_tensor(t1, tf.constant(2))
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
pad_t2 = shape_utils.pad_tensor(t2, tf.constant(2))
return pad_t1, pad_t2
pad_t1_result, pad_t2_result = self.execute(graph_fn, [])
self.assertAllEqual([1, 0], pad_t1_result)
self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result)
def test_clip_tensor_using_integer_input(self):
def graph_fn():
t1 = tf.constant([1, 2, 3], dtype=tf.int32)
clip_t1 = shape_utils.clip_tensor(t1, 2)
t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
clip_t2 = shape_utils.clip_tensor(t2, 2)
self.assertEqual(2, clip_t1.get_shape()[0])
self.assertEqual(2, clip_t2.get_shape()[0])
return clip_t1, clip_t2
clip_t1_result, clip_t2_result = self.execute(graph_fn, [])
self.assertAllEqual([1, 2], clip_t1_result)
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result)
def test_clip_tensor_using_tensor_input(self):
def graph_fn():
t1 = tf.constant([1, 2, 3], dtype=tf.int32)
clip_t1 = shape_utils.clip_tensor(t1, tf.constant(2))
t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
clip_t2 = shape_utils.clip_tensor(t2, tf.constant(2))
return clip_t1, clip_t2
clip_t1_result, clip_t2_result = self.execute(graph_fn, [])
self.assertAllEqual([1, 2], clip_t1_result)
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result)
def test_pad_or_clip_tensor_using_integer_input(self):
def graph_fn():
t1 = tf.constant([1], dtype=tf.int32)
tt1 = shape_utils.pad_or_clip_tensor(t1, 2)
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
tt2 = shape_utils.pad_or_clip_tensor(t2, 2)
t3 = tf.constant([1, 2, 3], dtype=tf.int32)
tt3 = shape_utils.clip_tensor(t3, 2)
t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
tt4 = shape_utils.clip_tensor(t4, 2)
self.assertEqual(2, tt1.get_shape()[0])
self.assertEqual(2, tt2.get_shape()[0])
self.assertEqual(2, tt3.get_shape()[0])
self.assertEqual(2, tt4.get_shape()[0])
return tt1, tt2, tt3, tt4
tt1_result, tt2_result, tt3_result, tt4_result = self.execute(graph_fn, [])
self.assertAllEqual([1, 0], tt1_result)
self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result)
self.assertAllEqual([1, 2], tt3_result)
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result)
def test_pad_or_clip_tensor_using_tensor_input(self):
def graph_fn():
t1 = tf.constant([1], dtype=tf.int32)
tt1 = shape_utils.pad_or_clip_tensor(t1, tf.constant(2))
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32)
tt2 = shape_utils.pad_or_clip_tensor(t2, tf.constant(2))
t3 = tf.constant([1, 2, 3], dtype=tf.int32)
tt3 = shape_utils.clip_tensor(t3, tf.constant(2))
t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32)
tt4 = shape_utils.clip_tensor(t4, tf.constant(2))
return tt1, tt2, tt3, tt4
tt1_result, tt2_result, tt3_result, tt4_result = self.execute(graph_fn, [])
self.assertAllEqual([1, 0], tt1_result)
self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result)
self.assertAllEqual([1, 2], tt3_result)
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result)
def test_combined_static_dynamic_shape(self):
for n in [2, 3, 4]:
tensor = tf.zeros((n, 2, 3))
combined_shape = shape_utils.combined_static_and_dynamic_shape(
tensor)
self.assertListEqual(combined_shape[1:], [2, 3])
def test_pad_or_clip_nd_tensor(self):
def graph_fn(input_tensor):
output_tensor = shape_utils.pad_or_clip_nd(
input_tensor, [None, 3, 5, tf.constant(6)])
return output_tensor
for n in [2, 3, 4, 5]:
input_np = np.zeros((n, 5, 4, 7))
output_tensor_np = self.execute(graph_fn, [input_np])
self.assertAllEqual(output_tensor_np.shape[1:], [3, 5, 6])
class StaticOrDynamicMapFnTest(test_case.TestCase):
def test_with_dynamic_shape(self):
def fn(input_tensor):
return tf.reduce_sum(input_tensor)
def graph_fn(input_tensor):
return shape_utils.static_or_dynamic_map_fn(fn, input_tensor)
# The input has different shapes, but due to how self.execute()
# works, the shape is known at graph compile time.
result1 = self.execute(
graph_fn, [np.array([[1, 2], [3, 1], [0, 4]]),])
result2 = self.execute(
graph_fn, [np.array([[-1, 1], [0, 9]]),])
self.assertAllEqual(result1, [3, 4, 4])
self.assertAllEqual(result2, [0, 9])
def test_with_static_shape(self):
def fn(input_tensor):
return tf.reduce_sum(input_tensor)
def graph_fn():
input_tensor = tf.constant([[1, 2], [3, 1], [0, 4]], dtype=tf.float32)
return shape_utils.static_or_dynamic_map_fn(fn, input_tensor)
result = self.execute(graph_fn, [])
self.assertAllEqual(result, [3, 4, 4])
def test_with_multiple_dynamic_shapes(self):
def fn(elems):
input_tensor, scalar_index_tensor = elems
return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), [])
def graph_fn(input_tensor, scalar_index_tensor):
map_fn_output = shape_utils.static_or_dynamic_map_fn(
fn, [input_tensor, scalar_index_tensor], dtype=tf.float32)
return map_fn_output
# The input has different shapes, but due to how self.execute()
# works, the shape is known at graph compile time.
result1 = self.execute(
graph_fn, [
np.array([[1, 2, 3], [4, 5, -1], [0, 6, 9]]),
np.array([[0], [2], [1]]),
])
result2 = self.execute(
graph_fn, [
np.array([[-1, 1, 0], [3, 9, 30]]),
np.array([[1], [0]])
])
self.assertAllEqual(result1, [1, -1, 6])
self.assertAllEqual(result2, [1, 3])
def test_with_multiple_static_shapes(self):
def fn(elems):
input_tensor, scalar_index_tensor = elems
return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), [])
def graph_fn():
input_tensor = tf.constant([[1, 2, 3], [4, 5, -1], [0, 6, 9]],
dtype=tf.float32)
scalar_index_tensor = tf.constant([[0], [2], [1]], dtype=tf.int32)
map_fn_output = shape_utils.static_or_dynamic_map_fn(
fn, [input_tensor, scalar_index_tensor], dtype=tf.float32)
return map_fn_output
result = self.execute(graph_fn, [])
self.assertAllEqual(result, [1, -1, 6])
def test_fails_with_nested_input(self):
def fn(input_tensor):
return input_tensor
input_tensor1 = tf.constant([1])
input_tensor2 = tf.constant([2])
with self.assertRaisesRegexp(
ValueError, '`elems` must be a Tensor or list of Tensors.'):
shape_utils.static_or_dynamic_map_fn(
fn, [input_tensor1, [input_tensor2]], dtype=tf.float32)
class CheckMinImageShapeTest(test_case.TestCase):
def test_check_min_image_dim_static_shape(self):
input_tensor = tf.constant(np.zeros([1, 42, 42, 3]))
_ = shape_utils.check_min_image_dim(33, input_tensor)
with self.assertRaisesRegexp(
ValueError, 'image size must be >= 64 in both height and width.'):
_ = shape_utils.check_min_image_dim(64, input_tensor)
def test_check_min_image_dim_dynamic_shape(self):
def graph_fn(input_tensor):
return shape_utils.check_min_image_dim(33, input_tensor)
self.execute(graph_fn,
[np.zeros([1, 42, 42, 3])])
self.assertRaises(
ValueError, self.execute,
graph_fn, np.zeros([1, 32, 32, 3])
)
class AssertShapeEqualTest(test_case.TestCase):
def test_unequal_static_shape_raises_exception(self):
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
shape_b = tf.constant(np.zeros([4, 2, 3, 1]))
self.assertRaisesRegex(
ValueError, 'Unequal shapes',
shape_utils.assert_shape_equal,
shape_utils.combined_static_and_dynamic_shape(shape_a),
shape_utils.combined_static_and_dynamic_shape(shape_b)
)
def test_equal_static_shape_succeeds(self):
def graph_fn():
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
shape_b = tf.constant(np.zeros([4, 2, 2, 1]))
shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(shape_a),
shape_utils.combined_static_and_dynamic_shape(shape_b))
return tf.constant(0)
self.execute(graph_fn, [])
def test_unequal_dynamic_shape_raises_tf_assert(self):
def graph_fn(tensor_a, tensor_b):
shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(tensor_a),
shape_utils.combined_static_and_dynamic_shape(tensor_b))
return tf.constant(0)
self.assertRaises(ValueError,
self.execute, graph_fn,
[np.zeros([1, 2, 2, 3]), np.zeros([1, 4, 4, 3])])
def test_equal_dynamic_shape_succeeds(self):
def graph_fn(tensor_a, tensor_b):
shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(tensor_a),
shape_utils.combined_static_and_dynamic_shape(tensor_b)
)
return tf.constant(0)
self.execute(graph_fn, [np.zeros([1, 2, 2, 3]),
np.zeros([1, 2, 2, 3])])
def test_unequal_static_shape_along_first_dim_raises_exception(self):
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
shape_b = tf.constant(np.zeros([6, 2, 3, 1]))
self.assertRaisesRegexp(
ValueError, 'Unequal first dimension',
shape_utils.assert_shape_equal_along_first_dimension,
shape_utils.combined_static_and_dynamic_shape(shape_a),
shape_utils.combined_static_and_dynamic_shape(shape_b)
)
def test_equal_static_shape_along_first_dim_succeeds(self):
def graph_fn():
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
shape_b = tf.constant(np.zeros([4, 7, 2]))
shape_utils.assert_shape_equal_along_first_dimension(
shape_utils.combined_static_and_dynamic_shape(shape_a),
shape_utils.combined_static_and_dynamic_shape(shape_b))
return tf.constant(0)
self.execute(graph_fn, [])
def test_unequal_dynamic_shape_along_first_dim_raises_tf_assert(self):
def graph_fn(tensor_a, tensor_b):
shape_utils.assert_shape_equal_along_first_dimension(
shape_utils.combined_static_and_dynamic_shape(tensor_a),
shape_utils.combined_static_and_dynamic_shape(tensor_b))
return tf.constant(0)
self.assertRaises(ValueError,
self.execute, graph_fn,
[np.zeros([1, 2, 2, 3]), np.zeros([2, 4, 3])])
def test_equal_dynamic_shape_along_first_dim_succeeds(self):
def graph_fn(tensor_a, tensor_b):
shape_utils.assert_shape_equal_along_first_dimension(
shape_utils.combined_static_and_dynamic_shape(tensor_a),
shape_utils.combined_static_and_dynamic_shape(tensor_b))
return tf.constant(0)
self.execute(graph_fn, [np.zeros([5, 2, 2, 3]), np.zeros([5])])
class FlattenExpandDimensionTest(test_case.TestCase):
def test_flatten_given_dims(self):
def graph_fn():
inputs = tf.random_uniform([5, 2, 10, 10, 3])
actual_flattened = shape_utils.flatten_dimensions(inputs, first=1, last=3)
expected_flattened = tf.reshape(inputs, [5, 20, 10, 3])
return actual_flattened, expected_flattened
(actual_flattened_np,
expected_flattened_np) = self.execute(graph_fn, [])
self.assertAllClose(expected_flattened_np, actual_flattened_np)
def test_raises_value_error_incorrect_dimensions(self):
inputs = tf.random_uniform([5, 2, 10, 10, 3])
self.assertRaises(ValueError,
shape_utils.flatten_dimensions, inputs,
first=0, last=6)
def test_flatten_first_two_dimensions(self):
def graph_fn():
inputs = tf.constant(
[
[[1, 2], [3, 4]],
[[5, 6], [7, 8]],
[[9, 10], [11, 12]]
], dtype=tf.int32)
flattened_tensor = shape_utils.flatten_first_n_dimensions(
inputs, 2)
return flattened_tensor
flattened_tensor_out = self.execute(graph_fn, [])
expected_output = [[1, 2],
[3, 4],
[5, 6],
[7, 8],
[9, 10],
[11, 12]]
self.assertAllEqual(expected_output, flattened_tensor_out)
def test_expand_first_dimension(self):
def graph_fn():
inputs = tf.constant(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
[9, 10],
[11, 12]
], dtype=tf.int32)
dims = [3, 2]
expanded_tensor = shape_utils.expand_first_dimension(
inputs, dims)
return expanded_tensor
expanded_tensor_out = self.execute(graph_fn, [])
expected_output = [
[[1, 2], [3, 4]],
[[5, 6], [7, 8]],
[[9, 10], [11, 12]]]
self.assertAllEqual(expected_output, expanded_tensor_out)
def test_expand_first_dimension_with_incompatible_dims(self):
def graph_fn():
inputs = tf.constant(
[
[[1, 2]],
[[3, 4]],
[[5, 6]],
], dtype=tf.int32)
dims = [3, 2]
expanded_tensor = shape_utils.expand_first_dimension(
inputs, dims)
return expanded_tensor
self.assertRaises(ValueError, self.execute, graph_fn, [])
if __name__ == '__main__':
tf.test.main()