PortaSpeech / utils /metrics /diagonal_metrics.py
RayeRen's picture
init
d1b91e7
import torch
def get_focus_rate(attn, src_padding_mask=None, tgt_padding_mask=None):
'''
attn: bs x L_t x L_s
'''
if src_padding_mask is not None:
attn = attn * (1 - src_padding_mask.float())[:, None, :]
if tgt_padding_mask is not None:
attn = attn * (1 - tgt_padding_mask.float())[:, :, None]
focus_rate = attn.max(-1).values.sum(-1)
focus_rate = focus_rate / attn.sum(-1).sum(-1)
return focus_rate
def get_phone_coverage_rate(attn, src_padding_mask=None, src_seg_mask=None, tgt_padding_mask=None):
'''
attn: bs x L_t x L_s
'''
src_mask = attn.new(attn.size(0), attn.size(-1)).bool().fill_(False)
if src_padding_mask is not None:
src_mask |= src_padding_mask
if src_seg_mask is not None:
src_mask |= src_seg_mask
attn = attn * (1 - src_mask.float())[:, None, :]
if tgt_padding_mask is not None:
attn = attn * (1 - tgt_padding_mask.float())[:, :, None]
phone_coverage_rate = attn.max(1).values.sum(-1)
# phone_coverage_rate = phone_coverage_rate / attn.sum(-1).sum(-1)
phone_coverage_rate = phone_coverage_rate / (1 - src_mask.float()).sum(-1)
return phone_coverage_rate
def get_diagonal_focus_rate(attn, attn_ks, target_len, src_padding_mask=None, tgt_padding_mask=None,
band_mask_factor=5, band_width=50):
'''
attn: bx x L_t x L_s
attn_ks: shape: tensor with shape [batch_size], input_lens/output_lens
diagonal: y=k*x (k=attn_ks, x:output, y:input)
1 0 0
0 1 0
0 0 1
y>=k*(x-width) and y<=k*(x+width):1
else:0
'''
# width = min(target_len/band_mask_factor, 50)
width1 = target_len / band_mask_factor
width2 = target_len.new(target_len.size()).fill_(band_width)
width = torch.where(width1 < width2, width1, width2).float()
base = torch.ones(attn.size()).to(attn.device)
zero = torch.zeros(attn.size()).to(attn.device)
x = torch.arange(0, attn.size(1)).to(attn.device)[None, :, None].float() * base
y = torch.arange(0, attn.size(2)).to(attn.device)[None, None, :].float() * base
cond = (y - attn_ks[:, None, None] * x)
cond1 = cond + attn_ks[:, None, None] * width[:, None, None]
cond2 = cond - attn_ks[:, None, None] * width[:, None, None]
mask1 = torch.where(cond1 < 0, zero, base)
mask2 = torch.where(cond2 > 0, zero, base)
mask = mask1 * mask2
if src_padding_mask is not None:
attn = attn * (1 - src_padding_mask.float())[:, None, :]
if tgt_padding_mask is not None:
attn = attn * (1 - tgt_padding_mask.float())[:, :, None]
diagonal_attn = attn * mask
diagonal_focus_rate = diagonal_attn.sum(-1).sum(-1) / attn.sum(-1).sum(-1)
return diagonal_focus_rate, mask