Spaces:
Runtime error
Runtime error
import re | |
import torch | |
import numpy as np | |
from textgrid import TextGrid | |
from utils.text.text_encoder import is_sil_phoneme | |
def get_mel2ph(tg_fn, ph, mel, hop_size, audio_sample_rate, min_sil_duration=0): | |
ph_list = ph.split(" ") | |
itvs = TextGrid.fromFile(tg_fn)[1] | |
itvs_ = [] | |
for i in range(len(itvs)): | |
if itvs[i].maxTime - itvs[i].minTime < min_sil_duration and i > 0 and is_sil_phoneme(itvs[i].mark): | |
itvs_[-1].maxTime = itvs[i].maxTime | |
else: | |
itvs_.append(itvs[i]) | |
itvs.intervals = itvs_ | |
itv_marks = [itv.mark for itv in itvs] | |
tg_len = len([x for x in itvs if not is_sil_phoneme(x.mark)]) | |
ph_len = len([x for x in ph_list if not is_sil_phoneme(x)]) | |
assert tg_len == ph_len, (tg_len, ph_len, itv_marks, ph_list, tg_fn) | |
mel2ph = np.zeros([mel.shape[0]], int) | |
i_itv = 0 | |
i_ph = 0 | |
while i_itv < len(itvs): | |
itv = itvs[i_itv] | |
ph = ph_list[i_ph] | |
itv_ph = itv.mark | |
start_frame = int(itv.minTime * audio_sample_rate / hop_size + 0.5) | |
end_frame = int(itv.maxTime * audio_sample_rate / hop_size + 0.5) | |
if is_sil_phoneme(itv_ph) and not is_sil_phoneme(ph): | |
mel2ph[start_frame:end_frame] = i_ph | |
i_itv += 1 | |
elif not is_sil_phoneme(itv_ph) and is_sil_phoneme(ph): | |
i_ph += 1 | |
else: | |
if not ((is_sil_phoneme(itv_ph) and is_sil_phoneme(ph)) \ | |
or re.sub(r'\d+', '', itv_ph.lower()) == re.sub(r'\d+', '', ph.lower())): | |
print(f"| WARN: {tg_fn} phs are not same: ", itv_ph, ph, itv_marks, ph_list) | |
mel2ph[start_frame:end_frame] = i_ph + 1 | |
i_ph += 1 | |
i_itv += 1 | |
mel2ph[-1] = mel2ph[-2] | |
assert not np.any(mel2ph == 0) | |
T_t = len(ph_list) | |
dur = mel2token_to_dur(mel2ph, T_t) | |
return mel2ph.tolist(), dur.tolist() | |
def split_audio_by_mel2ph(audio, mel2ph, hop_size, audio_num_mel_bins): | |
if isinstance(audio, torch.Tensor): | |
audio = audio.numpy() | |
if isinstance(mel2ph, torch.Tensor): | |
mel2ph = mel2ph.numpy() | |
assert len(audio.shape) == 1, len(mel2ph.shape) == 1 | |
split_locs = [] | |
for i in range(1, len(mel2ph)): | |
if mel2ph[i] != mel2ph[i - 1]: | |
split_loc = i * hop_size | |
split_locs.append(split_loc) | |
new_audio = [] | |
for i in range(len(split_locs) - 1): | |
new_audio.append(audio[split_locs[i]:split_locs[i + 1]]) | |
new_audio.append(np.zeros([0.5 * audio_num_mel_bins])) | |
return np.concatenate(new_audio) | |
def mel2token_to_dur(mel2token, T_txt=None, max_dur=None): | |
is_torch = isinstance(mel2token, torch.Tensor) | |
has_batch_dim = True | |
if not is_torch: | |
mel2token = torch.LongTensor(mel2token) | |
if T_txt is None: | |
T_txt = mel2token.max() | |
if len(mel2token.shape) == 1: | |
mel2token = mel2token[None, ...] | |
has_batch_dim = False | |
B, _ = mel2token.shape | |
dur = mel2token.new_zeros(B, T_txt + 1).scatter_add(1, mel2token, torch.ones_like(mel2token)) | |
dur = dur[:, 1:] | |
if max_dur is not None: | |
dur = dur.clamp(max=max_dur) | |
if not is_torch: | |
dur = dur.numpy() | |
if not has_batch_dim: | |
dur = dur[0] | |
return dur | |