CLIP-Caption-Reward / retrieval /caption_data.py
akhaliq's picture
akhaliq HF staff
add files
c80917c
raw
history blame
17.4 kB
from torch.utils.data import DataLoader, Dataset, Sampler
from pathlib import Path
import json
from multiprocessing import Pool
from tqdm import tqdm
from PIL import Image
import random
import numpy as np
import torch
import torchvision
import torchvision.transforms as T
from torch.utils.data.distributed import DistributedSampler
from transformers import T5Tokenizer, BertTokenizer, BertTokenizerFast, CLIPTokenizer
import text_utils
project_dir = Path(__file__).parent.resolve()
workspace_dir = project_dir.parent.parent
dataset_dir = workspace_dir.joinpath('datasets/').resolve()
# coco_dir = dataset_dir.joinpath('COCO')
# vg_dir = dataset_dir.joinpath('VG')
coco_img_dir = dataset_dir.joinpath('COCO/images/')
coco_data_dir = project_dir.parent.joinpath('CLIP-ViL/CLIP-ViL-Direct/caption/data/')
# coco_feature_dir = coco_dir.joinpath('features')
class COCORetrievalDataset(Dataset):
def __init__(self, split='karpathy_train', rank=-1, topk=-1, verbose=True, args=None, mode='train'):
super().__init__()
self.topk = topk
self.verbose = verbose
self.args = args
self.rank = rank
self.mode = mode
# Loading datasets to data
self.source = split
if self.verbose:
print('Data source: ', self.source)
# if self.args.tokenizer is None:
# self.args.tokenizer = self.args.decoder_backbone
# if 'bert' in self.args.tokenizer:
# self.tokenizer = BertTokenizerFast.from_pretrained(
# self.args.tokenizer,
# # max_length=self.args.max_text_length,
# # do_lower_case=self.args.do_lower_case
# )
# elif 'clip' in self.args.tokenizer:
# self.tokenizer = CLIPTokenizer.from_pretrained(
# self.args.tokenizer,
# # max_length=self.args.max_text_length,
# # do_lower_case=self.args.do_lower_case
# )
self.tokenizer = CLIPTokenizer.from_pretrained(
self.args.tokenizer,
# max_length=self.args.max_text_length,
# do_lower_case=self.args.do_lower_case
)
with open(coco_data_dir.joinpath('cocotalk.json')) as f:
self.vocab = list(json.load(f)['ix_to_word'].values())
popped = self.vocab.pop(-1)
assert popped == 'UNK'
if self.verbose:
print('vocab size: ', len(self.vocab))
data_info_path = coco_data_dir.joinpath('dataset_coco.json')
with open(data_info_path) as f:
karpathy_data = json.load(f)
split_rename = {
'train': 'train',
'restval': 'train',
'val': 'val',
'test': 'test'
}
n_images = 0
data = []
# self.vocab = set()
for datum in karpathy_data['images']:
re_split = split_rename[datum['split']]
# if re_split == 'train':
# for d in datum['sentences']:
# self.vocab = self.vocab.union(set(d['tokens']))
if re_split != self.source.split('_')[-1]:
continue
if re_split == 'train':
# for d in datum['sentences']:
# img_id = datum['filename'].split('.')[0]
# new_datum = {
# 'filename': datum['filename'],
# 'img_id': img_id,
# 'sent': d['raw'].strip(),
# 'targets': [d['raw'].strip() for d in datum['sentences']],
# 'is_train': True,
# 'cocoid': datum['cocoid']
# }
# data.append(new_datum)
img_id = datum['filename'].split('.')[0]
new_datum = {
'filename': datum['filename'],
'img_id': img_id,
# 'sent': d['raw'],
# 'targets': [d['raw'].strip() for d in datum['sentences']],
'targets': [" ".join(d['tokens']) for d in datum['sentences']],
'is_train': True,
'cocoid': datum['cocoid']
}
data.append(new_datum)
else:
img_id = datum['filename'].split('.')[0]
new_datum = {
'filename': datum['filename'],
'img_id': img_id,
# 'sent': d['raw'],
# 'targets': [d['raw'].strip() for d in datum['sentences']],
'targets': [" ".join(d['tokens']) for d in datum['sentences']],
'is_train': False,
'cocoid': datum['cocoid']
}
data.append(new_datum)
n_images += 1
if self.verbose:
print(f"{self.source} has {n_images} images")
# print(f"Loaded {len(data)} data from", split)
self.n_gpus = torch.cuda.device_count()
if self.topk > 0:
data = data[:self.topk]
if self.verbose:
print(f"Use only {self.topk} data")
self.data = data
# if self.verbose:
# print("# all sentences:", len(self.data))
if self.args.load_feat:
# feat_dir = coco_dir.joinpath(''
# self.feat_loader = HybridLoader('/scratch-space/CLIP-ViL/CLIP-ViL-Direct/caption/data/cocotalk_clipscore_vis', ext='.npy', in_memory=False)
self.feat_loader = HybridLoader(
coco_data_dir.joinpath('cocotalk_clipscore_vis'),
ext='.npy', in_memory=False)
else:
if 'openai/clip' in self.args.encoder_backbone:
# from transformers import CLIPProcessor
# self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32",
# size=args.image_size,
# do_resize=True,
# do_center_crop=False,
# )
# self.img_transform = lambda image: self.processor.feature_extractor(
# image,
# return_tensors='pt')['pixel_values'][0]
self.image_mean = [0.48145466, 0.4578275, 0.40821073]
self.image_std = [0.26862954, 0.26130258, 0.27577711]
# captioning
# self.img_transform = T.Compose([
# T.Resize((self.args.image_size, self.args.image_size))
# ])
# retrieval
self.img_transform = T.Compose([
T.Resize(self.args.image_size, interpolation=T.functional.InterpolationMode.BICUBIC),
T.CenterCrop(self.args.image_size)
])
self.img_tensor_transform = T.Compose([
# T.RandomCrop(224),
# T.RandomHorizontalFlip(p=0.3),
T.ConvertImageDtype(torch.float),
T.Normalize(self.image_mean, self.image_std)
]
)
# elif 'google/vit' in self.args.encoder_backbone:
# self.image_mean = [0.5, 0.5, 0.5]
# self.image_std = [0.5, 0.5, 0.5]
# self.img_transform = T.Compose([
# # T.PILToTensor(),
# T.Resize((self.args.image_size, self.args.image_size))
# ])
# self.img_tensor_transform = T.Compose([
# # T.RandomCrop(224),
# # T.RandomHorizontalFlip(p=0.3),
# T.ConvertImageDtype(torch.float),
# T.Normalize(self.image_mean, self.image_std)
# ]
# )
def get_negative_text(self, text):
neg_type = random.choice(['repeat', 'remove', 'insert', 'swap', 'shuffle'])
if neg_type == 'repeat':
text = text_utils.repeat(text)
elif neg_type == 'remove':
text = text_utils.remove(text)
elif neg_type == 'insert':
text = text_utils.insert(text, self.vocab)
elif neg_type == 'swap':
text = text_utils.swap(text, self.vocab)
elif neg_type == 'shuffle':
text = text_utils.shuffle(text)
return text, neg_type
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
datum = self.data[idx]
return self.process_datum(datum)
def process_datum(self, datum):
out_dict = {}
###### Image ######
if self.args.load_feat:
cocoid = datum['cocoid']
out_dict['cocoid'] = str(cocoid)
img_feat = self.feat_loader.get(str(cocoid))
out_dict['img_feat'] = torch.from_numpy(img_feat)
else:
img_id = datum['img_id']
out_dict['img_id'] = img_id
if 'train' in datum['filename']:
img_split = 'train2014'
elif 'val' in datum['filename']:
img_split = 'val2014'
img_path = coco_img_dir.joinpath(img_split).joinpath(datum['filename']).with_suffix('.jpg')
assert img_path.exists()
img_path = str(img_path)
out_dict['img_path'] = img_path
img_tensor = torchvision.io.read_image(img_path)
# out_dict['img_tensor'] = img
# img = Image.open(img_path).convert('RGB')
# img_tensor = torch.as_tensor(np.asarray(img))
out_dict['img_tensor'] = self.img_transform(img_tensor)
# self.img_transform(img_tensor)
# out_dict['img_tensor'] = self.img_transform(img)
###### Text #####
# if datum['is_train']:
# sent = datum['sent'].strip()
sent = random.choice(datum['targets'])
# target_ids = self.tokenizer.encode(
# sent, max_length=self.args.gen_max_length, truncation=True)
# assert len(target_ids) <= self.args.gen_max_length, len(target_ids)
out_dict['sent'] = sent
# out_dict['target_ids'] = torch.LongTensor(target_ids)
# out_dict['target_length'] = len(target_ids)
# negative sample
neg_sent, neg_type = self.get_negative_text(sent)
# neg_target_ids = self.tokenizer.encode(
# neg_sent, max_length=self.args.gen_max_length, truncation=True)
# assert len(neg_target_ids) <= self.args.gen_max_length, len(neg_target_ids)
out_dict['neg_sent'] = neg_sent
out_dict['neg_type'] = neg_type
# out_dict['neg_target_ids'] = torch.LongTensor(neg_target_ids)
# out_dict['neg_target_length'] = len(neg_target_ids)
if 'targets' in datum:
out_dict['targets'] = datum['targets']
return out_dict
def collate_fn(self, batch):
batch_entry = {}
B = len(batch)
# if 'target_ids' in batch[0]:
# T_W_L = max(entry['target_length'] for entry in batch)
# target_ids = torch.ones(
# B, T_W_L, dtype=torch.long) * self.tokenizer.pad_token_id
# if 'target_ids' in batch[0]:
# T_W_L = max(entry['target_length'] for entry in batch)
# target_ids = torch.ones(
# B, T_W_L, dtype=torch.long) * self.tokenizer.pad_token_id
targets = []
img_ids = []
img_paths = []
coco_ids = []
if self.args.load_feat:
img_feats = torch.zeros(B, 512, dtype=torch.float)
else:
# imgs = []
img_tensor = torch.zeros(B, 3, self.args.image_size, self.args.image_size, dtype=torch.uint8)
for i, entry in enumerate(batch):
if self.args.load_feat:
coco_ids.append(entry['cocoid'])
img_feats[i] = entry['img_feat']
else:
img_ids.append(entry['img_id'])
img_paths.append(entry['img_path'])
img_tensor[i] = entry['img_tensor']
# if 'target_ids' in entry:
# target_ids[i, :entry['target_length']] = entry['target_ids']
if 'targets' in entry:
targets.append(entry['targets'])
if 'sent' in batch[0]:
# word_mask = target_ids != self.tokenizer.pad_token_id
# target_ids[~word_mask] = -100
# batch_entry['target_ids'] = target_ids
tokenized = self.tokenizer([entry['sent'] for entry in batch], truncation=True, padding=True, return_tensors='pt')
neg_tokenized = self.tokenizer([entry['neg_sent'] for entry in batch], truncation=True, padding=True, return_tensors='pt')
# sent, max_length=self.args.gen_max_length, truncation=True)
batch_entry['text'] = (tokenized.input_ids, tokenized.attention_mask)
batch_entry['neg_text'] = (neg_tokenized.input_ids, neg_tokenized.attention_mask)
if self.args.load_feat:
batch_entry['coco_ids'] = coco_ids
batch_entry['img_feats'] = img_feats
else:
img_tensor = self.img_tensor_transform(img_tensor)
batch_entry['img_id'] = img_ids
batch_entry['img_paths'] = img_paths
batch_entry['img_tensor'] = img_tensor
batch_entry['targets'] = targets
# print('batch created')
# batch_entry['task'] = 'caption'
return batch_entry
# def get_loader(args, split='karpathy_train', mode='train',
# batch_size=32, workers=4, distributed=False, gpu=0,
# topk=-1):
# verbose = (gpu == 0)
# dataset = COCORetrievalDataset(
# split,
# rank=gpu,
# topk=topk,
# verbose=verbose,
# args=args,
# mode=mode)
# # if distributed:
# # sampler = DistributedSampler(dataset)
# # else:
# # sampler = None
# if mode == 'train':
# loader = DataLoader(
# dataset, batch_size=batch_size, shuffle=(sampler is None),
# num_workers=workers, pin_memory=True, sampler=sampler,
# collate_fn=dataset.collate_fn)
# else:
# loader = DataLoader(
# dataset,
# batch_size=batch_size, shuffle=False,
# num_workers=workers, pin_memory=True,
# sampler=sampler,
# collate_fn=dataset.collate_fn,
# drop_last=False)
# # if verbose:
# # loader.evaluator = COCOCaptionEvaluator()
# # loader.task = 'caption'
# return loader
# class COCOCaptionEvaluator:
# def __init__(self):
# import language_evaluation
# self.evaluator = language_evaluation.CocoEvaluator(verbose=False)
# def evaluate(self, predicts, answers):
# results = self.evaluator.run_evaluation(predicts, answers)
# return results
import six
import os
import h5py
class HybridLoader:
"""
If db_path is a director, then use normal file loading
If lmdb, then load from lmdb
The loading method depend on extention.
in_memory: if in_memory is True, we save all the features in memory
For individual np(y|z)s, we don't need to do that because the system will do this for us.
Should be useful for lmdb or h5.
(Copied this idea from vilbert)
"""
def __init__(self, db_path, ext='.npy', in_memory=False):
self.db_path = db_path
self.ext = ext
if self.ext == '.npy':
self.loader = lambda x: np.load(six.BytesIO(x))
else:
self.loader = lambda x: np.load(six.BytesIO(x))['feat']
# if db_path.endswith('.lmdb'):
# self.db_type = 'lmdb'
# self.lmdb = lmdbdict(db_path, unsafe=True)
# self.lmdb._key_dumps = DUMPS_FUNC['ascii']
# self.lmdb._value_loads = LOADS_FUNC['identity']
# elif db_path.endswith('.pth'): # Assume a key,value dictionary
# self.db_type = 'pth'
# self.feat_file = torch.load(db_path)
# self.loader = lambda x: x
# print('HybridLoader: ext is ignored')
# elif db_path.endswith('h5'):
# self.db_type = 'h5'
# self.loader = lambda x: np.array(x).astype('float32')
# else:
# self.db_type = 'dir'
self.in_memory = in_memory
if self.in_memory:
self.features = {}
def get(self, key):
# if self.in_memory and key in self.features:
# # We save f_input because we want to save the
# # compressed bytes to save memory
# f_input = self.features[key]
# elif self.db_type == 'lmdb':
# f_input = self.lmdb[key]
# elif self.db_type == 'pth':
# f_input = self.feat_file[key]
# elif self.db_type == 'h5':
# f_input = h5py.File(self.db_path, 'r')[key]
# else:
# f_input = open(os.path.join(
# self.db_path, key + self.ext), 'rb').read()
f_input = open(os.path.join(
self.db_path, key + self.ext), 'rb').read()
if self.in_memory and key not in self.features:
self.features[key] = f_input
# load image
feat = self.loader(f_input)
return feat