Spaces:
Runtime error
Runtime error
""" | |
Preprocess a raw json dataset into features files for use in data_loader.py | |
Input: json file that has the form | |
[{ file_path: 'path/img.jpg', captions: ['a caption', ...] }, ...] | |
example element in this list would look like | |
{'captions': [u'A man with a red helmet on a small moped on a dirt road. ', u'Man riding a motor bike on a dirt road on the countryside.', u'A man riding on the back of a motorcycle.', u'A dirt path with a young person on a motor bike rests to the foreground of a verdant area with a bridge and a background of cloud-wreathed mountains. ', u'A man in a red shirt and a red hat is on a motorcycle on a hill side.'], 'file_path': u'val2014/COCO_val2014_000000391895.jpg', 'id': 391895} | |
This script reads this json, does some basic preprocessing on the captions | |
(e.g. lowercase, etc.), creates a special UNK token, and encodes everything to arrays | |
Output: two folders of features | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import json | |
import argparse | |
from random import shuffle, seed | |
import string | |
# non-standard dependencies: | |
import h5py | |
from six.moves import cPickle | |
import numpy as np | |
import torch | |
import torchvision.models as models | |
import skimage.io | |
from torchvision import transforms as trn | |
preprocess = trn.Compose([ | |
#trn.ToTensor(), | |
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
from captioning.utils.resnet_utils import myResnet | |
import captioning.utils.resnet as resnet | |
def main(params): | |
net = getattr(resnet, params['model'])() | |
net.load_state_dict(torch.load(os.path.join(params['model_root'],params['model']+'.pth'))) | |
my_resnet = myResnet(net) | |
my_resnet.cuda() | |
my_resnet.eval() | |
imgs = json.load(open(params['input_json'], 'r')) | |
imgs = imgs['images'] | |
N = len(imgs) | |
seed(123) # make reproducible | |
dir_fc = params['output_dir']+'_fc' | |
dir_att = params['output_dir']+'_att' | |
if not os.path.isdir(dir_fc): | |
os.mkdir(dir_fc) | |
if not os.path.isdir(dir_att): | |
os.mkdir(dir_att) | |
for i,img in enumerate(imgs): | |
# load the image | |
I = skimage.io.imread(os.path.join(params['images_root'], img['filepath'], img['filename'])) | |
# handle grayscale input images | |
if len(I.shape) == 2: | |
I = I[:,:,np.newaxis] | |
I = np.concatenate((I,I,I), axis=2) | |
I = I.astype('float32')/255.0 | |
I = torch.from_numpy(I.transpose([2,0,1])).cuda() | |
I = preprocess(I) | |
with torch.no_grad(): | |
tmp_fc, tmp_att = my_resnet(I, params['att_size']) | |
# write to pkl | |
# print(dir_fc, str(img['cocoid']), tmp_fc.shape, tmp_att.shape, dir_att) | |
# exit() | |
np.save(os.path.join(dir_fc, str(img['cocoid'])), tmp_fc.data.cpu().float().numpy()) | |
np.savez_compressed(os.path.join(dir_att, str(img['cocoid'])), feat=tmp_att.data.cpu().float().numpy()) | |
if i % 1000 == 0: | |
print('processing %d/%d (%.2f%% done)' % (i, N, i*100.0/N)) | |
print('wrote ', params['output_dir']) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
# input json | |
parser.add_argument('--input_json', required=True, help='input json file to process into hdf5') | |
parser.add_argument('--output_dir', default='data', help='output h5 file') | |
# options | |
parser.add_argument('--images_root', default='', help='root location in which images are stored, to be prepended to file_path in input json') | |
parser.add_argument('--att_size', default=14, type=int, help='14x14 or 7x7') | |
parser.add_argument('--model', default='resnet101', type=str, help='resnet101, resnet152') | |
parser.add_argument('--model_root', default='./data/imagenet_weights', type=str, help='model root') | |
args = parser.parse_args() | |
params = vars(args) # convert to ordinary dict | |
print('parsed input parameters:') | |
print(json.dumps(params, indent = 2)) | |
main(params) | |