Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import sys | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'depth'))) | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'refer'))) | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'stable-diffusion'))) | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'taming-transformers'))) | |
os.chdir(os.path.abspath(os.path.join(os.path.dirname(__file__), 'depth'))) | |
import cv2 | |
import numpy as np | |
import torch | |
from depth.models_depth.model import EVPDepth | |
from models_refer.model import EVPRefer | |
from depth.configs.train_options import TrainOptions | |
from depth.configs.test_options import TestOptions | |
import glob | |
import utils | |
import torchvision.transforms as transforms | |
from utils_depth.misc import colorize | |
from PIL import Image | |
import torch.nn.functional as F | |
import gradio as gr | |
import tempfile | |
from transformers import CLIPTokenizer | |
css = """ | |
#img-display-container { | |
max-height: 50vh; | |
} | |
#img-display-input { | |
max-height: 40vh; | |
} | |
#img-display-output { | |
max-height: 40vh; | |
} | |
""" | |
def create_depth_demo(model, device): | |
gr.Markdown("### Depth Prediction demo") | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input') | |
depth_image = gr.Image(label="Depth Map", elem_id='img-display-output') | |
raw_file = gr.File(label="16-bit raw depth, multiplier:256") | |
submit = gr.Button("Submit") | |
def on_submit(image): | |
transform = transforms.ToTensor() | |
image = transform(image).unsqueeze(0).to(device) | |
shape = image.shape | |
image = torch.nn.functional.interpolate(image, (440,480), mode='bilinear', align_corners=True) | |
image = F.pad(image, (0, 0, 40, 0)) | |
with torch.no_grad(): | |
pred = model(image)['pred_d'] | |
pred = pred[:,:,40:,:] | |
pred = torch.nn.functional.interpolate(pred, shape[2:], mode='bilinear', align_corners=True) | |
pred_d_numpy = pred.squeeze().cpu().numpy() | |
colored_depth, _, _ = colorize(pred_d_numpy, cmap='gray_r') | |
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
raw_depth = Image.fromarray((pred_d_numpy*256).astype('uint16')) | |
raw_depth.save(tmp.name) | |
return [colored_depth, tmp.name] | |
submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file]) | |
examples = gr.Examples(examples=["imgs/test_img1.jpg", "imgs/test_img2.jpg", "imgs/test_img3.jpg", "imgs/test_img4.jpg", "imgs/test_img5.jpg"], | |
inputs=[input_image]) | |
def create_refseg_demo(model, tokenizer, device): | |
gr.Markdown("### Referring Segmentation demo") | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input') | |
refseg_image = gr.Image(label="Output Mask", elem_id='img-display-output') | |
input_text = gr.Textbox(label='Prompt', placeholder='Please upload your image first', lines=2) | |
submit = gr.Button("Submit") | |
def on_submit(image, text): | |
image = np.array(image) | |
image_t = transforms.ToTensor()(image).unsqueeze(0).to(device) | |
image_t = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])(image_t) | |
shape = image_t.shape | |
image_t = torch.nn.functional.interpolate(image_t, (512,512), mode='bilinear', align_corners=True) | |
input_ids = tokenizer(text=text, truncation=True, max_length=40, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")['input_ids'].to(device) | |
with torch.no_grad(): | |
pred = model(image_t, input_ids) | |
pred = torch.nn.functional.interpolate(pred, shape[2:], mode='bilinear', align_corners=True) | |
output_mask = pred.cpu().argmax(1).data.numpy().squeeze() | |
alpha = 0.65 | |
image[output_mask == 0] = (image[output_mask == 0]*alpha).astype(np.uint8) | |
contours, _ = cv2.findContours(output_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
cv2.drawContours(image, contours, -1, (0, 255, 0), 2) | |
return Image.fromarray(image) | |
submit.click(on_submit, inputs=[input_image, input_text], outputs=refseg_image) | |
examples = gr.Examples(examples=[["imgs/test_img2.jpg", "green plant"], ["imgs/test_img3.jpg", "chair"], ["imgs/test_img4.jpg", "left green plant"], ["imgs/test_img5.jpg", "man walking on foot"], ["imgs/test_img5.jpg", "the rightest camel"]], | |
inputs=[input_image, input_text]) | |
def main(): | |
opt = TestOptions().initialize() | |
args = opt.parse_args() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = EVPDepth(args=args, caption_aggregation=True) | |
model.to(device) | |
model_weight = torch.load('best_model_nyu.ckpt', map_location=device)['model'] | |
model.load_state_dict(model_weight, strict=False) | |
model.eval() | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
model_refseg = EVPRefer() | |
model_refseg.to(device) | |
model_weight = torch.load('best_model_refcoco.pth', map_location=device)['model'] | |
model_refseg.load_state_dict(model_weight, strict=False) | |
model_refseg.eval() | |
title = "# EVP" | |
description = """Official demo for **EVP: Enhanced Visual Perception using Inverse Multi-Attentive Feature | |
Refinement and Regularized Image-Text Alignment**. | |
EVP is a deep learning model for metric depth estimation from a single image. | |
Please refer to our [paper](https://arxiv.org/abs/2312.08548) or [github](https://github.com/Lavreniuk/EVP) for more details.""" | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Tab("Depth Prediction"): | |
create_depth_demo(model, device) | |
with gr.Tab("Referring Segmentation"): | |
create_refseg_demo(model_refseg, tokenizer, device) | |
gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/MykolaL/evp?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br> | |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=MykolaL/evp" alt="visitors"></p></center>''') | |
demo.queue().launch(share=True) | |
if __name__ == '__main__': | |
main() | |