evp / depth /models_depth /optimizer.py
nick_93
init
bcec54e
raw
history blame
5.89 kB
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# The code is from SimMIM.
# (https://github.com/microsoft/SimMIM)
# ------------------------------------------------------------------------------
import json
from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor
from mmcv.runner import build_optimizer
from mmcv.runner import get_dist_info
def get_num_layer_for_swin(var_name, num_max_layer, layers_per_stage):
var_name = var_name.replace('encoder', 'backbone') if var_name.startswith('encoder') else var_name
if var_name in ("backbone.cls_token", "backbone.mask_token",
"backbone.pos_embed", "backbone.absolute_pos_embed"):
return 0
elif var_name.startswith("backbone.patch_embed"):
return 0
elif var_name.startswith("backbone.layers"):
if var_name.split('.')[3] == "blocks":
stage_id = int(var_name.split('.')[2])
layer_id = int(var_name.split('.')[4]) \
+ sum(layers_per_stage[:stage_id])
return layer_id + 1
elif var_name.split('.')[3] == "downsample":
stage_id = int(var_name.split('.')[2])
layer_id = sum(layers_per_stage[:stage_id + 1])
return layer_id
else:
return num_max_layer - 1
@OPTIMIZER_BUILDERS.register_module()
class LDMOptimizerConstructor(DefaultOptimizerConstructor):
def add_params(self, params, module, prefix='', is_dcn_module=None):
"""Add all parameters of module to the params list.
The parameters of the given module will be added to the list of param
groups, with specific rules defined by paramwise_cfg.
Args:
params (list[dict]): A list of param groups, it will be modified
in place.
module (nn.Module): The module to be added.
prefix (str): The prefix of the module
is_dcn_module (int|float|None): If the current module is a
submodule of DCN, `is_dcn_module` will be passed to
control conv_offset layer's learning rate. Defaults to None.
"""
parameter_groups = {}
no_decay_names = self.paramwise_cfg.get('no_decay_names', [])
print("Build LDMOptimizerConstructor")
weight_decay = self.base_wd
for name, param in module.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or name in ('absolute_pos_embed'):
group_name = "no_decay"
this_weight_decay = 0.
else:
group_name = "decay"
this_weight_decay = weight_decay
for nd_name in no_decay_names:
if nd_name in name:
group_name = "no_decay"
this_weight_decay = 0.
break
if 'unet' in name or 'cond_stage_model' in name or 'encoder_vq' in name or 'clip_model' in name:
layer_id = 0
else:
layer_id = 1
group_name = "layer_%d_%s" % (layer_id, group_name)
if group_name not in parameter_groups:
if layer_id == 0:
scale = 0.01
else:
scale = 1.0
parameter_groups[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"param_names": [],
"lr_scale": scale,
"group_name": group_name,
"lr": scale * self.base_lr,
}
parameter_groups[group_name]["params"].append(param)
parameter_groups[group_name]["param_names"].append(name)
rank, _ = get_dist_info()
if rank == 0:
to_display = {}
for key in parameter_groups:
to_display[key] = {
"param_names": parameter_groups[key]["param_names"],
"lr_scale": parameter_groups[key]["lr_scale"],
"lr": parameter_groups[key]["lr"],
"weight_decay": parameter_groups[key]["weight_decay"],
}
params.extend(parameter_groups.values())
def build_optimizers(model, cfgs):
"""Build multiple optimizers from configs.
If `cfgs` contains several dicts for optimizers, then a dict for each
constructed optimizers will be returned.
If `cfgs` only contains one optimizer config, the constructed optimizer
itself will be returned.
For example,
1) Multiple optimizer configs:
.. code-block:: python
optimizer_cfg = dict(
model1=dict(type='SGD', lr=lr),
model2=dict(type='SGD', lr=lr))
The return dict is
``dict('model1': torch.optim.Optimizer, 'model2': torch.optim.Optimizer)``
2) Single optimizer config:
.. code-block:: python
optimizer_cfg = dict(type='SGD', lr=lr)
The return is ``torch.optim.Optimizer``.
Args:
model (:obj:`nn.Module`): The model with parameters to be optimized.
cfgs (dict): The config dict of the optimizer.
Returns:
dict[:obj:`torch.optim.Optimizer`] | :obj:`torch.optim.Optimizer`:
The initialized optimizers.
"""
optimizers = {}
if hasattr(model, 'module'):
model = model.module
# determine whether 'cfgs' has several dicts for optimizers
if all(isinstance(v, dict) for v in cfgs.values()):
for key, cfg in cfgs.items():
cfg_ = cfg.copy()
module = getattr(model, key)
optimizers[key] = build_optimizer(module, cfg_)
return optimizers
return build_optimizer(model, cfgs)