evp / depth /models_depth /layers.py
nick_93
init
bcec54e
raw
history blame
1.69 kB
import torch
import torch.nn as nn
class PatchTransformerEncoder(nn.Module):
def __init__(self, in_channels, patch_size=10, embedding_dim=128, num_heads=4):
super(PatchTransformerEncoder, self).__init__()
encoder_layers = nn.TransformerEncoderLayer(embedding_dim, num_heads, dim_feedforward=1024)
self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=4) # takes shape S,N,E
self.embedding_convPxP = nn.Conv2d(in_channels, embedding_dim,
kernel_size=patch_size, stride=patch_size, padding=0)
self.positional_encodings = nn.Parameter(torch.rand(900, embedding_dim), requires_grad=True)
def forward(self, x):
embeddings = self.embedding_convPxP(x).flatten(2) # .shape = n,c,s = n, embedding_dim, s
# embeddings = nn.functional.pad(embeddings, (1,0)) # extra special token at start ?
embeddings = embeddings + self.positional_encodings[:embeddings.shape[2], :].T.unsqueeze(0)
# change to S,N,E format required by transformer
embeddings = embeddings.permute(2, 0, 1)
x = self.transformer_encoder(embeddings) # .shape = S, N, E
return x
class PixelWiseDotProduct(nn.Module):
def __init__(self):
super(PixelWiseDotProduct, self).__init__()
def forward(self, x, K):
n, c, h, w = x.size()
_, cout, ck = K.size()
assert c == ck, "Number of channels in x and Embedding dimension (at dim 2) of K matrix must match"
y = torch.matmul(x.view(n, c, h * w).permute(0, 2, 1), K.permute(0, 2, 1)) # .shape = n, hw, cout
return y.permute(0, 2, 1).view(n, cout, h, w)