nick_93
init
2a7f680
raw
history blame
3.27 kB
import os
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
class LSUNBase(Dataset):
def __init__(self,
txt_file,
data_root,
size=None,
interpolation="bicubic",
flip_p=0.5
):
self.data_paths = txt_file
self.data_root = data_root
with open(self.data_paths, "r") as f:
self.image_paths = f.read().splitlines()
self._length = len(self.image_paths)
self.labels = {
"relative_file_path_": [l for l in self.image_paths],
"file_path_": [os.path.join(self.data_root, l)
for l in self.image_paths],
}
self.size = size
self.interpolation = {"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = dict((k, self.labels[k][i]) for k in self.labels)
image = Image.open(example["file_path_"])
if not image.mode == "RGB":
image = image.convert("RGB")
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
crop = min(img.shape[0], img.shape[1])
h, w, = img.shape[0], img.shape[1]
img = img[(h - crop) // 2:(h + crop) // 2,
(w - crop) // 2:(w + crop) // 2]
image = Image.fromarray(img)
if self.size is not None:
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip(image)
image = np.array(image).astype(np.uint8)
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
return example
class LSUNChurchesTrain(LSUNBase):
def __init__(self, **kwargs):
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
class LSUNChurchesValidation(LSUNBase):
def __init__(self, flip_p=0., **kwargs):
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
flip_p=flip_p, **kwargs)
class LSUNBedroomsTrain(LSUNBase):
def __init__(self, **kwargs):
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
class LSUNBedroomsValidation(LSUNBase):
def __init__(self, flip_p=0.0, **kwargs):
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
flip_p=flip_p, **kwargs)
class LSUNCatsTrain(LSUNBase):
def __init__(self, **kwargs):
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
class LSUNCatsValidation(LSUNBase):
def __init__(self, flip_p=0., **kwargs):
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
flip_p=flip_p, **kwargs)