Spaces:
Running
on
A10G
Running
on
A10G
model: | |
base_learning_rate: 5.0e-5 # set to target_lr by starting main.py with '--scale_lr False' | |
target: ldm.models.diffusion.ddpm.LatentDiffusion | |
params: | |
linear_start: 0.0015 | |
linear_end: 0.0155 | |
num_timesteps_cond: 1 | |
log_every_t: 200 | |
timesteps: 1000 | |
loss_type: l1 | |
first_stage_key: "image" | |
cond_stage_key: "image" | |
image_size: 32 | |
channels: 4 | |
cond_stage_trainable: False | |
concat_mode: False | |
scale_by_std: True | |
monitor: 'val/loss_simple_ema' | |
scheduler_config: # 10000 warmup steps | |
target: ldm.lr_scheduler.LambdaLinearScheduler | |
params: | |
warm_up_steps: [10000] | |
cycle_lengths: [10000000000000] | |
f_start: [1.e-6] | |
f_max: [1.] | |
f_min: [ 1.] | |
unet_config: | |
target: ldm.modules.diffusionmodules.openaimodel.UNetModel | |
params: | |
image_size: 32 | |
in_channels: 4 | |
out_channels: 4 | |
model_channels: 192 | |
attention_resolutions: [ 1, 2, 4, 8 ] # 32, 16, 8, 4 | |
num_res_blocks: 2 | |
channel_mult: [ 1,2,2,4,4 ] # 32, 16, 8, 4, 2 | |
num_heads: 8 | |
use_scale_shift_norm: True | |
resblock_updown: True | |
first_stage_config: | |
target: ldm.models.autoencoder.AutoencoderKL | |
params: | |
embed_dim: 4 | |
monitor: "val/rec_loss" | |
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt" | |
ddconfig: | |
double_z: True | |
z_channels: 4 | |
resolution: 256 | |
in_channels: 3 | |
out_ch: 3 | |
ch: 128 | |
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1 | |
num_res_blocks: 2 | |
attn_resolutions: [ ] | |
dropout: 0.0 | |
lossconfig: | |
target: torch.nn.Identity | |
cond_stage_config: "__is_unconditional__" | |
data: | |
target: main.DataModuleFromConfig | |
params: | |
batch_size: 96 | |
num_workers: 5 | |
wrap: False | |
train: | |
target: ldm.data.lsun.LSUNChurchesTrain | |
params: | |
size: 256 | |
validation: | |
target: ldm.data.lsun.LSUNChurchesValidation | |
params: | |
size: 256 | |
lightning: | |
callbacks: | |
image_logger: | |
target: main.ImageLogger | |
params: | |
batch_frequency: 5000 | |
max_images: 8 | |
increase_log_steps: False | |
trainer: | |
benchmark: True |