nick_93
init
bcec54e
raw
history blame
26.1 kB
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# The deconvolution code is based on Simple Baseline.
# (https://github.com/microsoft/human-pose-estimation.pytorch/blob/master/lib/models/pose_resnet.py)
# Modified by Zigang Geng (zigang@mail.ustc.edu.cn).
# ------------------------------------------------------------------------------
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_, DropPath
from mmcv.cnn import (build_conv_layer, build_norm_layer, build_upsample_layer,
constant_init, normal_init)
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
import torch.nn.functional as F
from evp.models import UNetWrapper, TextAdapterRefer, FrozenCLIPEmbedder
from .miniViT import mViT
from .attractor import AttractorLayer, AttractorLayerUnnormed
from .dist_layers import ConditionalLogBinomial
from .localbins_layers import (Projector, SeedBinRegressor, SeedBinRegressorUnnormed)
import os
def icnr(x, scale=2, init=nn.init.kaiming_normal_):
"""
Checkerboard artifact free sub-pixel convolution
https://arxiv.org/abs/1707.02937
"""
ni,nf,h,w = x.shape
ni2 = int(ni/(scale**2))
k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1)
k = k.contiguous().view(ni2, nf, -1)
k = k.repeat(1, 1, scale**2)
k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1)
x.data.copy_(k)
class PixelShuffle(nn.Module):
"""
Real-Time Single Image and Video Super-Resolution
https://arxiv.org/abs/1609.05158
"""
def __init__(self, n_channels, scale):
super(PixelShuffle, self).__init__()
self.conv = nn.Conv2d(n_channels, n_channels*(scale**2), kernel_size=1)
icnr(self.conv.weight)
self.shuf = nn.PixelShuffle(scale)
self.relu = nn.ReLU()
def forward(self,x):
x = self.shuf(self.relu(self.conv(x)))
return x
class AttentionModule(nn.Module):
def __init__(self, in_channels, out_channels):
super(AttentionModule, self).__init__()
# Convolutional Layers
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
# Group Normalization
self.group_norm = nn.GroupNorm(20, out_channels)
# ReLU Activation
self.relu = nn.ReLU()
# Spatial Attention
self.spatial_attention = nn.Sequential(
nn.Conv2d(in_channels, 1, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
# Apply spatial attention
spatial_attention = self.spatial_attention(x)
x = x * spatial_attention
# Apply convolutional layer
x = self.conv1(x)
x = self.group_norm(x)
x = self.relu(x)
return x
class AttentionDownsamplingModule(nn.Module):
def __init__(self, in_channels, out_channels, scale_factor=2):
super(AttentionDownsamplingModule, self).__init__()
# Spatial Attention
self.spatial_attention = nn.Sequential(
nn.Conv2d(in_channels, 1, kernel_size=1),
nn.Sigmoid()
)
# Channel Attention
self.channel_attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, in_channels // 8, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels // 8, in_channels, kernel_size=1),
nn.Sigmoid()
)
# Convolutional Layers
if scale_factor == 2:
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
elif scale_factor == 4:
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1)
# Group Normalization
self.group_norm = nn.GroupNorm(20, out_channels)
# ReLU Activation
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
# Apply spatial attention
spatial_attention = self.spatial_attention(x)
x = x * spatial_attention
# Apply channel attention
channel_attention = self.channel_attention(x)
x = x * channel_attention
# Apply convolutional layers
x = self.conv1(x)
x = self.group_norm(x)
x = self.relu(x)
x = self.conv2(x)
x = self.group_norm(x)
x = self.relu(x)
return x
class AttentionUpsamplingModule(nn.Module):
def __init__(self, in_channels, out_channels):
super(AttentionUpsamplingModule, self).__init__()
# Spatial Attention for outs[2]
self.spatial_attention = nn.Sequential(
nn.Conv2d(in_channels, 1, kernel_size=1),
nn.Sigmoid()
)
# Channel Attention for outs[2]
self.channel_attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, in_channels // 8, kernel_size=1),
nn.ReLU(),
nn.Conv2d(in_channels // 8, in_channels, kernel_size=1),
nn.Sigmoid()
)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
# Group Normalization
self.group_norm = nn.GroupNorm(20, out_channels)
# ReLU Activation
self.relu = nn.ReLU()
self.upscale = PixelShuffle(in_channels, 2)
def forward(self, x):
# Apply spatial attention
spatial_attention = self.spatial_attention(x)
x = x * spatial_attention
# Apply channel attention
channel_attention = self.channel_attention(x)
x = x * channel_attention
# Apply convolutional layers
x = self.conv1(x)
x = self.group_norm(x)
x = self.relu(x)
x = self.conv2(x)
x = self.group_norm(x)
x = self.relu(x)
# Upsample
x = self.upscale(x)
return x
class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvLayer, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1),
nn.GroupNorm(20, out_channels),
nn.ReLU(),
)
def forward(self, x):
x = self.conv1(x)
return x
class InverseMultiAttentiveFeatureRefinement(nn.Module):
def __init__(self, in_channels_list):
super(InverseMultiAttentiveFeatureRefinement, self).__init__()
self.layer1 = AttentionModule(in_channels_list[0], in_channels_list[0])
self.layer2 = AttentionDownsamplingModule(in_channels_list[0], in_channels_list[0]//2, scale_factor = 2)
self.layer3 = ConvLayer(in_channels_list[0]//2 + in_channels_list[1], in_channels_list[1])
self.layer4 = AttentionDownsamplingModule(in_channels_list[1], in_channels_list[1]//2, scale_factor = 2)
self.layer5 = ConvLayer(in_channels_list[1]//2 + in_channels_list[2], in_channels_list[2])
self.layer6 = AttentionDownsamplingModule(in_channels_list[2], in_channels_list[2]//2, scale_factor = 2)
self.layer7 = ConvLayer(in_channels_list[2]//2 + in_channels_list[3], in_channels_list[3])
'''
self.layer8 = AttentionUpsamplingModule(in_channels_list[3], in_channels_list[3])
self.layer9 = ConvLayer(in_channels_list[2] + in_channels_list[3], in_channels_list[2])
self.layer10 = AttentionUpsamplingModule(in_channels_list[2], in_channels_list[2])
self.layer11 = ConvLayer(in_channels_list[1] + in_channels_list[2], in_channels_list[1])
self.layer12 = AttentionUpsamplingModule(in_channels_list[1], in_channels_list[1])
self.layer13 = ConvLayer(in_channels_list[0] + in_channels_list[1], in_channels_list[0])
'''
def forward(self, inputs):
x_c4, x_c3, x_c2, x_c1 = inputs
x_c4 = self.layer1(x_c4)
x_c4_3 = self.layer2(x_c4)
x_c3 = torch.cat([x_c4_3, x_c3], dim=1)
x_c3 = self.layer3(x_c3)
x_c3_2 = self.layer4(x_c3)
x_c2 = torch.cat([x_c3_2, x_c2], dim=1)
x_c2 = self.layer5(x_c2)
x_c2_1 = self.layer6(x_c2)
x_c1 = torch.cat([x_c2_1, x_c1], dim=1)
x_c1 = self.layer7(x_c1)
'''
x_c1_2 = self.layer8(x_c1)
x_c2 = torch.cat([x_c1_2, x_c2], dim=1)
x_c2 = self.layer9(x_c2)
x_c2_3 = self.layer10(x_c2)
x_c3 = torch.cat([x_c2_3, x_c3], dim=1)
x_c3 = self.layer11(x_c3)
x_c3_4 = self.layer12(x_c3)
x_c4 = torch.cat([x_c3_4, x_c4], dim=1)
x_c4 = self.layer13(x_c4)
'''
return [x_c4, x_c3, x_c2, x_c1]
class EVPDepthEncoder(nn.Module):
def __init__(self, out_dim=1024, ldm_prior=[320, 680, 1320+1280], sd_path=None, text_dim=768,
dataset='nyu', caption_aggregation=False
):
super().__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1),
nn.GroupNorm(16, ldm_prior[0]),
nn.ReLU(),
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1),
)
self.layer2 = nn.Sequential(
nn.Conv2d(ldm_prior[1], ldm_prior[1], 3, stride=2, padding=1),
)
self.out_layer = nn.Sequential(
nn.Conv2d(sum(ldm_prior), out_dim, 1),
nn.GroupNorm(16, out_dim),
nn.ReLU(),
)
self.aggregation = InverseMultiAttentiveFeatureRefinement([320, 680, 1320, 1280])
self.apply(self._init_weights)
### stable diffusion layers
config = OmegaConf.load('./v1-inference.yaml')
if sd_path is None:
if os.path.exists('../checkpoints/v1-5-pruned-emaonly.ckpt'):
config.model.params.ckpt_path = '../checkpoints/v1-5-pruned-emaonly.ckpt'
else:
config.model.params.ckpt_path = None
else:
config.model.params.ckpt_path = f'../{sd_path}'
sd_model = instantiate_from_config(config.model)
self.encoder_vq = sd_model.first_stage_model
self.unet = UNetWrapper(sd_model.model, use_attn=True)
if dataset == 'kitti':
self.unet = UNetWrapper(sd_model.model, use_attn=True, base_size=384)
del sd_model.cond_stage_model
del self.encoder_vq.decoder
del self.unet.unet.diffusion_model.out
del self.encoder_vq.post_quant_conv.weight
del self.encoder_vq.post_quant_conv.bias
for param in self.encoder_vq.parameters():
param.requires_grad = True
self.text_adapter = TextAdapterRefer(text_dim=text_dim)
self.gamma = nn.Parameter(torch.ones(text_dim) * 1e-4)
if caption_aggregation:
class_embeddings = torch.load(f'{dataset}_class_embeddings_my_captions.pth')
#class_embeddings_list = [value['class_embeddings'] for key, value in class_embeddings.items()]
#stacked_embeddings = torch.stack(class_embeddings_list, dim=0)
#class_embeddings = torch.mean(stacked_embeddings, dim=0).unsqueeze(0)
if 'aggregated' in class_embeddings:
class_embeddings = class_embeddings['aggregated']
else:
clip_model = FrozenCLIPEmbedder(max_length=40,pool=False).cuda()
class_embeddings_new = [clip_model.encode(value['caption'][0]) for key, value in class_embeddings.items()]
class_embeddings_new = torch.mean(torch.stack(class_embeddings_new, dim=0), dim=0)
class_embeddings['aggregated'] = class_embeddings_new
torch.save(class_embeddings, f'{dataset}_class_embeddings_my_captions.pth')
class_embeddings = class_embeddings['aggregated']
self.register_buffer('class_embeddings', class_embeddings)
else:
self.class_embeddings = torch.load(f'{dataset}_class_embeddings_my_captions.pth')
self.clip_model = FrozenCLIPEmbedder(max_length=40,pool=False)
for param in self.clip_model.parameters():
param.requires_grad = True
#if dataset == 'kitti':
# self.text_adapter_ = TextAdapterRefer(text_dim=text_dim)
# self.gamma_ = nn.Parameter(torch.ones(text_dim) * 1e-4)
self.caption_aggregation = caption_aggregation
self.dataset = dataset
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
nn.init.constant_(m.bias, 0)
def forward_features(self, feats):
x = self.ldm_to_net[0](feats[0])
for i in range(3):
if i > 0:
x = x + self.ldm_to_net[i](feats[i])
x = self.layers[i](x)
x = self.upsample_layers[i](x)
return self.out_conv(x)
def forward(self, x, class_ids=None, img_paths=None):
latents = self.encoder_vq.encode(x).mode()
# add division by std
if self.dataset == 'nyu':
latents = latents / 5.07543
elif self.dataset == 'kitti':
latents = latents / 4.6211
else:
print('Please calculate the STD for the dataset!')
if class_ids is not None:
if self.caption_aggregation:
class_embeddings = self.class_embeddings[[0]*len(class_ids.tolist())]#[class_ids.tolist()]
else:
class_embeddings = []
for img_path in img_paths:
class_embeddings.extend([value['caption'][0] for key, value in self.class_embeddings.items() if key in img_path.replace('//', '/')])
class_embeddings = self.clip_model.encode(class_embeddings)
else:
class_embeddings = self.class_embeddings
c_crossattn = self.text_adapter(latents, class_embeddings, self.gamma)
t = torch.ones((x.shape[0],), device=x.device).long()
#if self.dataset == 'kitti':
# c_crossattn_last = self.text_adapter_(latents, class_embeddings, self.gamma_)
# outs = self.unet(latents, t, c_crossattn=[c_crossattn, c_crossattn_last])
#else:
outs = self.unet(latents, t, c_crossattn=[c_crossattn])
outs = self.aggregation(outs)
feats = [outs[0], outs[1], torch.cat([outs[2], F.interpolate(outs[3], scale_factor=2)], dim=1)]
x = torch.cat([self.layer1(feats[0]), self.layer2(feats[1]), feats[2]], dim=1)
return self.out_layer(x)
def get_latent(self, x):
return self.encoder_vq.encode(x).mode()
class EVPDepth(nn.Module):
def __init__(self, args=None, caption_aggregation=False):
super().__init__()
self.max_depth = args.max_depth
self.min_depth = args.min_depth_eval
embed_dim = 192
channels_in = embed_dim*8
channels_out = embed_dim
if args.dataset == 'nyudepthv2':
self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='nyu', caption_aggregation=caption_aggregation)
else:
self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='kitti', caption_aggregation=caption_aggregation)
self.decoder = Decoder(channels_in, channels_out, args)
self.decoder.init_weights()
self.mViT = False
self.custom = False
if not self.mViT and not self.custom:
n_bins = 64
bin_embedding_dim = 128
num_out_features = [32, 32, 32, 192]
min_temp = 0.0212
max_temp = 50
btlnck_features = 256
n_attractors = [16, 8, 4, 1]
attractor_alpha = 1000
attractor_gamma = 2
attractor_kind = "mean"
attractor_type = "inv"
self.bin_centers_type = "softplus"
self.bottle_neck = nn.Sequential(
nn.Conv2d(channels_in, btlnck_features, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(btlnck_features, btlnck_features, kernel_size=3, stride=1, padding=1))
for m in self.bottle_neck.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001, bias=0)
SeedBinRegressorLayer = SeedBinRegressorUnnormed
Attractor = AttractorLayerUnnormed
self.seed_bin_regressor = SeedBinRegressorLayer(
btlnck_features, n_bins=n_bins, min_depth=self.min_depth, max_depth=self.max_depth)
self.seed_projector = Projector(btlnck_features, bin_embedding_dim)
self.projectors = nn.ModuleList([
Projector(num_out, bin_embedding_dim)
for num_out in num_out_features
])
self.attractors = nn.ModuleList([
Attractor(bin_embedding_dim, n_bins, n_attractors=n_attractors[i], min_depth=self.min_depth, max_depth=self.max_depth,
alpha=attractor_alpha, gamma=attractor_gamma, kind=attractor_kind, attractor_type=attractor_type)
for i in range(len(num_out_features))
])
last_in = 192 + 1
self.conditional_log_binomial = ConditionalLogBinomial(
last_in, bin_embedding_dim, n_classes=n_bins, min_temp=min_temp, max_temp=max_temp)
elif self.mViT and not self.custom:
n_bins = 256
self.adaptive_bins_layer = mViT(192, n_query_channels=192, patch_size=16,
dim_out=n_bins,
embedding_dim=192, norm='linear')
self.conv_out = nn.Sequential(nn.Conv2d(192, n_bins, kernel_size=1, stride=1, padding=0),
nn.Softmax(dim=1))
def forward(self, x, class_ids=None, img_paths=None):
b, c, h, w = x.shape
x = x*2.0 - 1.0 # normalize to [-1, 1]
if h == 480 and w == 480:
new_x = torch.zeros(b, c, 512, 512, device=x.device)
new_x[:, :, 0:480, 0:480] = x
x = new_x
elif h==352 and w==352:
new_x = torch.zeros(b, c, 384, 384, device=x.device)
new_x[:, :, 0:352, 0:352] = x
x = new_x
elif h == 512 and w == 512:
pass
else:
print(h,w)
raise NotImplementedError
conv_feats = self.encoder(x, class_ids, img_paths)
if h == 480 or h == 352:
conv_feats = conv_feats[:, :, :-1, :-1]
self.decoder.remove_hooks()
out_depth, out, x_blocks = self.decoder([conv_feats])
if not self.mViT and not self.custom:
x = self.bottle_neck(conv_feats)
_, seed_b_centers = self.seed_bin_regressor(x)
if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2':
b_prev = (seed_b_centers - self.min_depth) / \
(self.max_depth - self.min_depth)
else:
b_prev = seed_b_centers
prev_b_embedding = self.seed_projector(x)
for projector, attractor, x in zip(self.projectors, self.attractors, x_blocks):
b_embedding = projector(x)
b, b_centers = attractor(
b_embedding, b_prev, prev_b_embedding, interpolate=True)
b_prev = b.clone()
prev_b_embedding = b_embedding.clone()
rel_cond = torch.sigmoid(out_depth) * self.max_depth
# concat rel depth with last. First interpolate rel depth to last size
rel_cond = nn.functional.interpolate(
rel_cond, size=out.shape[2:], mode='bilinear', align_corners=True)
last = torch.cat([out, rel_cond], dim=1)
b_embedding = nn.functional.interpolate(
b_embedding, last.shape[-2:], mode='bilinear', align_corners=True)
x = self.conditional_log_binomial(last, b_embedding)
# Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor
b_centers = nn.functional.interpolate(
b_centers, x.shape[-2:], mode='bilinear', align_corners=True)
out_depth = torch.sum(x * b_centers, dim=1, keepdim=True)
elif self.mViT and not self.custom:
bin_widths_normed, range_attention_maps = self.adaptive_bins_layer(out)
out = self.conv_out(range_attention_maps)
bin_widths = (self.max_depth - self.min_depth) * bin_widths_normed # .shape = N, dim_out
bin_widths = nn.functional.pad(bin_widths, (1, 0), mode='constant', value=self.min_depth)
bin_edges = torch.cumsum(bin_widths, dim=1)
centers = 0.5 * (bin_edges[:, :-1] + bin_edges[:, 1:])
n, dout = centers.size()
centers = centers.view(n, dout, 1, 1)
out_depth = torch.sum(out * centers, dim=1, keepdim=True)
else:
out_depth = torch.sigmoid(out_depth) * self.max_depth
return {'pred_d': out_depth}
class Decoder(nn.Module):
def __init__(self, in_channels, out_channels, args):
super().__init__()
self.deconv = args.num_deconv
self.in_channels = in_channels
embed_dim = 192
channels_in = embed_dim*8
channels_out = embed_dim
self.deconv_layers, self.intermediate_results = self._make_deconv_layer(
args.num_deconv,
args.num_filters,
args.deconv_kernels,
)
self.last_layer_depth = nn.Sequential(
nn.Conv2d(channels_out, channels_out, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(channels_out, 1, kernel_size=3, stride=1, padding=1))
for m in self.last_layer_depth.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001, bias=0)
conv_layers = []
conv_layers.append(
build_conv_layer(
dict(type='Conv2d'),
in_channels=args.num_filters[-1],
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1))
conv_layers.append(
build_norm_layer(dict(type='BN'), out_channels)[1])
conv_layers.append(nn.ReLU())
self.conv_layers = nn.Sequential(*conv_layers)
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
def forward(self, conv_feats):
out = self.deconv_layers(conv_feats[0])
out = self.conv_layers(out)
out = self.up(out)
self.intermediate_results.append(out)
out = self.up(out)
out_depth = self.last_layer_depth(out)
return out_depth, out, self.intermediate_results
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
"""Make deconv layers."""
layers = []
in_planes = self.in_channels
intermediate_results = [] # List to store intermediate feature maps
for i in range(num_layers):
kernel, padding, output_padding = \
self._get_deconv_cfg(num_kernels[i])
planes = num_filters[i]
layers.append(
build_upsample_layer(
dict(type='deconv'),
in_channels=in_planes,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=False))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU())
in_planes = planes
# Add a hook to store the intermediate result
layers[-1].register_forward_hook(self._hook_fn(intermediate_results))
return nn.Sequential(*layers), intermediate_results
def _hook_fn(self, intermediate_results):
def hook(module, input, output):
intermediate_results.append(output)
return hook
def remove_hooks(self):
self.intermediate_results.clear()
def _get_deconv_cfg(self, deconv_kernel):
"""Get configurations for deconv layers."""
if deconv_kernel == 4:
padding = 1
output_padding = 0
elif deconv_kernel == 3:
padding = 1
output_padding = 1
elif deconv_kernel == 2:
padding = 0
output_padding = 0
else:
raise ValueError(f'Not supported num_kernels ({deconv_kernel}).')
return deconv_kernel, padding, output_padding
def init_weights(self):
"""Initialize model weights."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001, bias=0)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
elif isinstance(m, nn.ConvTranspose2d):
normal_init(m, std=0.001)