Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
import torch.nn as nn | |
from .layers import PatchTransformerEncoder, PixelWiseDotProduct | |
class mViT(nn.Module): | |
def __init__(self, in_channels, n_query_channels=128, patch_size=16, dim_out=256, | |
embedding_dim=128, num_heads=4, norm='linear'): | |
super(mViT, self).__init__() | |
self.norm = norm | |
self.n_query_channels = n_query_channels | |
self.patch_transformer = PatchTransformerEncoder(in_channels, patch_size, embedding_dim, num_heads) | |
self.dot_product_layer = PixelWiseDotProduct() | |
self.conv3x3 = nn.Conv2d(in_channels, embedding_dim, kernel_size=3, stride=1, padding=1) | |
self.regressor = nn.Sequential(nn.Linear(embedding_dim, 256), | |
nn.LeakyReLU(), | |
nn.Linear(256, 256), | |
nn.LeakyReLU(), | |
nn.Linear(256, dim_out)) | |
def forward(self, x): | |
# n, c, h, w = x.size() | |
tgt = self.patch_transformer(x.clone()) # .shape = S, N, E | |
x = self.conv3x3(x) | |
regression_head, queries = tgt[0, ...], tgt[1:self.n_query_channels + 1, ...] | |
# Change from S, N, E to N, S, E | |
queries = queries.permute(1, 0, 2) | |
range_attention_maps = self.dot_product_layer(x, queries) # .shape = n, n_query_channels, h, w | |
y = self.regressor(regression_head) # .shape = N, dim_out | |
if self.norm == 'linear': | |
y = torch.relu(y) | |
eps = 0.1 | |
y = y + eps | |
elif self.norm == 'softmax': | |
return torch.softmax(y, dim=1), range_attention_maps | |
else: | |
y = torch.sigmoid(y) | |
y = y / y.sum(dim=1, keepdim=True) | |
return y, range_attention_maps | |