evp / depth /models_depth /miniViT.py
nick_93
init
bcec54e
raw
history blame
1.79 kB
import torch
import torch.nn as nn
from .layers import PatchTransformerEncoder, PixelWiseDotProduct
class mViT(nn.Module):
def __init__(self, in_channels, n_query_channels=128, patch_size=16, dim_out=256,
embedding_dim=128, num_heads=4, norm='linear'):
super(mViT, self).__init__()
self.norm = norm
self.n_query_channels = n_query_channels
self.patch_transformer = PatchTransformerEncoder(in_channels, patch_size, embedding_dim, num_heads)
self.dot_product_layer = PixelWiseDotProduct()
self.conv3x3 = nn.Conv2d(in_channels, embedding_dim, kernel_size=3, stride=1, padding=1)
self.regressor = nn.Sequential(nn.Linear(embedding_dim, 256),
nn.LeakyReLU(),
nn.Linear(256, 256),
nn.LeakyReLU(),
nn.Linear(256, dim_out))
def forward(self, x):
# n, c, h, w = x.size()
tgt = self.patch_transformer(x.clone()) # .shape = S, N, E
x = self.conv3x3(x)
regression_head, queries = tgt[0, ...], tgt[1:self.n_query_channels + 1, ...]
# Change from S, N, E to N, S, E
queries = queries.permute(1, 0, 2)
range_attention_maps = self.dot_product_layer(x, queries) # .shape = n, n_query_channels, h, w
y = self.regressor(regression_head) # .shape = N, dim_out
if self.norm == 'linear':
y = torch.relu(y)
eps = 0.1
y = y + eps
elif self.norm == 'softmax':
return torch.softmax(y, dim=1), range_attention_maps
else:
y = torch.sigmoid(y)
y = y / y.sum(dim=1, keepdim=True)
return y, range_attention_maps