Update app.py
Browse files
app.py
CHANGED
@@ -2,75 +2,148 @@ import gradio as gr
|
|
2 |
from llama_cpp import Llama
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
# def preload_model(model, preload_tokens=1024):
|
14 |
-
# # Dummy call to load model into RAM by accessing parts of it
|
15 |
-
# try:
|
16 |
-
# dummy_input = " " * preload_tokens
|
17 |
-
# _ = model(dummy_input, max_tokens=1)
|
18 |
-
# print("Model preloaded into RAM.")
|
19 |
-
# except Exception as e:
|
20 |
-
# print(f"Error preloading model: {e}")
|
21 |
-
|
22 |
-
# # Preload the model into RAM
|
23 |
-
# preload_model(model)
|
24 |
-
def respond(
|
25 |
-
message,
|
26 |
-
history: list[tuple[str, str]],
|
27 |
-
system_message,
|
28 |
-
max_tokens,
|
29 |
-
temperature,
|
30 |
-
top_p,
|
31 |
-
):
|
32 |
-
history = history[-3:]
|
33 |
-
# Construct the prompt
|
34 |
-
prompt = f"<s>{system_message}\n\n"
|
35 |
-
for user_msg, assistant_msg in history:
|
36 |
-
prompt += f"<|user|>{user_msg}<|end|></s> <|assistant|>{assistant_msg}<|end|></s>"
|
37 |
-
prompt += f"<|user|>{message}<|end|></s> <|assistant|>"
|
38 |
-
|
39 |
-
# Generate response
|
40 |
-
response = ""
|
41 |
-
for token in model(
|
42 |
-
prompt,
|
43 |
-
max_tokens=max_tokens,
|
44 |
-
temperature=temperature,
|
45 |
-
top_p=top_p,
|
46 |
-
stream=True,
|
47 |
-
stop=["<|end|>", "</s>"]
|
48 |
):
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
title="Med TinyLlama Chat",
|
71 |
-
description="Chat with the Med TinyLlama model for medical information.",
|
72 |
-
)
|
73 |
|
74 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
model = Llama(model_path=model_path, n_ctx=256, n_threads=2, n_batch=8, use_mlock=True)
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from llama_cpp import Llama
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
|
5 |
+
def create_responder(model):
|
6 |
+
def respond(
|
7 |
+
message,
|
8 |
+
history: list[tuple[str, str]],
|
9 |
+
system_message,
|
10 |
+
max_tokens,
|
11 |
+
temperature,
|
12 |
+
top_p,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
):
|
14 |
+
history = history[-3:]
|
15 |
+
# Construct the prompt
|
16 |
+
prompt = f"<s>{system_message}\n\n"
|
17 |
+
for user_msg, assistant_msg in history:
|
18 |
+
prompt += f"<|user|>{user_msg}<|end|></s> <|assistant|>{assistant_msg}<|end|></s>"
|
19 |
+
prompt += f"<|user|>{message}<|end|></s> <|assistant|>"
|
20 |
+
|
21 |
+
# Generate response
|
22 |
+
response = ""
|
23 |
+
for token in model(
|
24 |
+
prompt,
|
25 |
+
max_tokens=max_tokens,
|
26 |
+
temperature=temperature,
|
27 |
+
top_p=top_p,
|
28 |
+
stream=True,
|
29 |
+
stop=["<|end|>", "</s>"]
|
30 |
+
):
|
31 |
+
response += token['choices'][0]['text']
|
32 |
+
yield response.strip()
|
33 |
+
|
34 |
+
return respond
|
|
|
|
|
|
|
35 |
|
36 |
if __name__ == "__main__":
|
37 |
+
# Download the model
|
38 |
+
model_name = "Mykes/med_tinyllama_gguf"
|
39 |
+
filename = "unsloth.Q4_K_M.gguf"
|
40 |
+
model_path = hf_hub_download(repo_id=model_name, filename=filename)
|
41 |
+
|
42 |
+
# Initialize the model
|
43 |
model = Llama(model_path=model_path, n_ctx=256, n_threads=2, n_batch=8, use_mlock=True)
|
44 |
+
|
45 |
+
# Create a responder function with the model
|
46 |
+
respond = create_responder(model)
|
47 |
+
|
48 |
+
# Create the Gradio interface
|
49 |
+
demo = gr.ChatInterface(
|
50 |
+
respond,
|
51 |
+
undo_btn="Отменить",
|
52 |
+
clear_btn="Очистить",
|
53 |
+
additional_inputs=[
|
54 |
+
gr.Textbox(value="", label="System message"),
|
55 |
+
gr.Slider(minimum=128, maximum=4096, value=2048, step=1, label="Max new tokens"),
|
56 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
57 |
+
gr.Slider(
|
58 |
+
minimum=0.1,
|
59 |
+
maximum=1.0,
|
60 |
+
value=0.9,
|
61 |
+
step=0.05,
|
62 |
+
label="Top-p (nucleus sampling)"
|
63 |
+
),
|
64 |
+
],
|
65 |
+
title="Med TinyLlama Chat",
|
66 |
+
description="Chat with the Med TinyLlama model for medical information.",
|
67 |
+
)
|
68 |
+
|
69 |
+
demo.launch()
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
# import gradio as gr
|
76 |
+
# from llama_cpp import Llama
|
77 |
+
# from huggingface_hub import hf_hub_download
|
78 |
+
|
79 |
+
# # Download the model
|
80 |
+
# model_name = "Mykes/med_tinyllama_gguf"
|
81 |
+
# filename = "unsloth.Q4_K_M.gguf"
|
82 |
+
# model_path = hf_hub_download(repo_id=model_name, filename=filename)
|
83 |
+
|
84 |
+
# # Initialize the model
|
85 |
+
# # model = Llama(model_path=model_path, n_ctx=2048, n_threads=4, n_batch=32, use_mmap=True, use_mlock=True, rope_freq_base=10000, rope_freq_scale=1.0)
|
86 |
+
# model = Llama(model_path=model_path, n_ctx=256, n_threads=2, n_batch=8, use_mlock=True)
|
87 |
+
# # def preload_model(model, preload_tokens=1024):
|
88 |
+
# # # Dummy call to load model into RAM by accessing parts of it
|
89 |
+
# # try:
|
90 |
+
# # dummy_input = " " * preload_tokens
|
91 |
+
# # _ = model(dummy_input, max_tokens=1)
|
92 |
+
# # print("Model preloaded into RAM.")
|
93 |
+
# # except Exception as e:
|
94 |
+
# # print(f"Error preloading model: {e}")
|
95 |
+
|
96 |
+
# # # Preload the model into RAM
|
97 |
+
# # preload_model(model)
|
98 |
+
# def respond(
|
99 |
+
# message,
|
100 |
+
# history: list[tuple[str, str]],
|
101 |
+
# system_message,
|
102 |
+
# max_tokens,
|
103 |
+
# temperature,
|
104 |
+
# top_p,
|
105 |
+
# ):
|
106 |
+
# history = history[-3:]
|
107 |
+
# # Construct the prompt
|
108 |
+
# prompt = f"<s>{system_message}\n\n"
|
109 |
+
# for user_msg, assistant_msg in history:
|
110 |
+
# prompt += f"<|user|>{user_msg}<|end|></s> <|assistant|>{assistant_msg}<|end|></s>"
|
111 |
+
# prompt += f"<|user|>{message}<|end|></s> <|assistant|>"
|
112 |
+
|
113 |
+
# # Generate response
|
114 |
+
# response = ""
|
115 |
+
# for token in model(
|
116 |
+
# prompt,
|
117 |
+
# max_tokens=max_tokens,
|
118 |
+
# temperature=temperature,
|
119 |
+
# top_p=top_p,
|
120 |
+
# stream=True,
|
121 |
+
# stop=["<|end|>", "</s>"]
|
122 |
+
# ):
|
123 |
+
# response += token['choices'][0]['text']
|
124 |
+
# yield response.strip()
|
125 |
+
|
126 |
+
# # Create the Gradio interface
|
127 |
+
# demo = gr.ChatInterface(
|
128 |
+
# respond,
|
129 |
+
# undo_btn="Отменить",
|
130 |
+
# clear_btn="Очистить",
|
131 |
+
# additional_inputs=[
|
132 |
+
# # gr.Textbox(value="You are a friendly medical assistant.", label="System message"),
|
133 |
+
# gr.Textbox(value="", label="System message"),
|
134 |
+
# gr.Slider(minimum=128, maximum=4096, value=2048, step=1, label="Max new tokens"),
|
135 |
+
# gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
136 |
+
# gr.Slider(
|
137 |
+
# minimum=0.1,
|
138 |
+
# maximum=1.0,
|
139 |
+
# value=0.9,
|
140 |
+
# step=0.05,
|
141 |
+
# label="Top-p (nucleus sampling)",
|
142 |
+
# ),
|
143 |
+
# ],
|
144 |
+
# title="Med TinyLlama Chat",
|
145 |
+
# description="Chat with the Med TinyLlama model for medical information.",
|
146 |
+
# )
|
147 |
+
|
148 |
+
# if __name__ == "__main__":
|
149 |
+
# demo.launch()
|