Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Initialize the pipeline
|
5 |
+
pipe = pipeline(task="ner",
|
6 |
+
model='Mykes/rubert_ner_SDDCS',
|
7 |
+
tokenizer='Mykes/rubert_ner_SDDCS',
|
8 |
+
aggregation_strategy='max')
|
9 |
+
|
10 |
+
def process_text(text):
|
11 |
+
# Convert input to lowercase as in your example
|
12 |
+
results = pipe(text.lower())
|
13 |
+
|
14 |
+
# Format the output
|
15 |
+
output = []
|
16 |
+
for entity in results:
|
17 |
+
formatted_result = f"Type: {entity['entity_group']}\nWord: {entity['word']}\nScore: {entity['score']:.4f}\n"
|
18 |
+
output.append(formatted_result)
|
19 |
+
|
20 |
+
return "\n".join(output)
|
21 |
+
|
22 |
+
# Create Gradio interface
|
23 |
+
iface = gr.Interface(
|
24 |
+
fn=process_text,
|
25 |
+
inputs=gr.Textbox(lines=3, placeholder="Enter your text here..."),
|
26 |
+
outputs=gr.Textbox(lines=10),
|
27 |
+
title="Medical NER for Russian Text",
|
28 |
+
description="This model identifies medical entities (diseases, symptoms, drugs, etc.) in Russian text.",
|
29 |
+
examples=[
|
30 |
+
["У ребенка треога и норушения сна, потеря сознания, раньше ставили паническое расстройство. по назначению психиатра принимал атаракс без эффекта."],
|
31 |
+
]
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the interface
|
35 |
+
iface.launch()
|