Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| import os | |
| from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
| import google.generativeai as genai | |
| from langchain.vectorstores import FAISS | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.prompts import PromptTemplate | |
| from dotenv import load_dotenv | |
| # Load environment variables | |
| load_dotenv() | |
| api_key = os.getenv("GOOGLE_API_KEY") | |
| genai.configure(api_key=api_key) | |
| def get_pdf_text(pdf_docs): | |
| text = "" | |
| for pdf in pdf_docs: | |
| pdf_reader = PdfReader(pdf) | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| return text | |
| def get_text_chunks(text): | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| def get_vector_store(text_chunks): | |
| embedding_function = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
| vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function) | |
| vector_store.save_local("faiss_index") | |
| def get_conversational_chain(): | |
| prompt_template = """ | |
| Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in | |
| provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n | |
| Context:\n {context}?\n | |
| Question: \n{question}\n | |
| Answer: | |
| """ | |
| model = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0.3) | |
| prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
| chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
| return chain | |
| def user_input(user_question): | |
| embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
| new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
| docs = new_db.similarity_search(user_question) | |
| chain = get_conversational_chain() | |
| response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) | |
| return response["output_text"] | |
| # Main function | |
| def main(): | |
| st.header("ChatBot") | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| with st.form(key="uploader_form"): | |
| pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True) | |
| submit_button = st.form_submit_button(label="Submit & Process") | |
| if submit_button: | |
| if pdf_docs: | |
| with st.spinner("Processing..."): | |
| raw_text = get_pdf_text(pdf_docs) | |
| text_chunks = get_text_chunks(raw_text) | |
| get_vector_store(text_chunks) | |
| st.success("Processing completed successfully.") | |
| else: | |
| st.warning("Please upload at least one PDF file.") | |
| # Display chat messages from history on app rerun | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.markdown(message["content"]) | |
| # React to user input | |
| if prompt := st.chat_input("Ask a question from the PDF files"): | |
| # Display user message in chat message container | |
| st.chat_message("user").markdown(prompt) | |
| # Add user message to chat history | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| response = user_input(prompt) | |
| # Display assistant response in chat message container | |
| with st.chat_message("assistant"): | |
| st.markdown(response) | |
| # Add assistant response to chat history | |
| st.session_state.messages.append({"role": "assistant", "content": response}) | |
| if __name__ == "__main__": | |
| main() | |