Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,129 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
-
print("--- app.py: Streamlit imported ---")
|
| 4 |
import os
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py (DEBUGGING VERSION)
|
| 2 |
+
|
| 3 |
+
print("--- Python script starting ---")
|
| 4 |
+
|
| 5 |
import streamlit as st
|
|
|
|
| 6 |
import os
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
from pinecone import Pinecone
|
| 9 |
+
|
| 10 |
+
# --- Standard Imports ---
|
| 11 |
+
from langchain_pinecone import PineconeVectorStore
|
| 12 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
| 13 |
+
from langchain_groq import ChatGroq
|
| 14 |
+
from langchain_core.prompts import PromptTemplate
|
| 15 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 16 |
+
from langchain_core.output_parsers import PydanticOutputParser
|
| 17 |
+
from pydantic import BaseModel, Field
|
| 18 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 19 |
+
from langchain.retrievers.document_compressors import CohereRerank
|
| 20 |
+
|
| 21 |
+
print("--- All imports successful ---")
|
| 22 |
+
|
| 23 |
+
# We wrap the ENTIRE app in a try/except block to catch any startup error
|
| 24 |
+
try:
|
| 25 |
+
# --- Load Environment Variables ---
|
| 26 |
+
print("Step 1: Loading environment variables...")
|
| 27 |
+
load_dotenv()
|
| 28 |
+
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
|
| 29 |
+
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
| 30 |
+
COHERE_API_KEY = os.getenv('COHERE_API_KEY')
|
| 31 |
+
INDEX_NAME = "rag-chatbot"
|
| 32 |
+
print("Step 1: SUCCESS")
|
| 33 |
+
|
| 34 |
+
# --- Page Configuration ---
|
| 35 |
+
st.set_page_config(page_title="Production RAG System", page_icon="🚀", layout="wide")
|
| 36 |
+
st.title("🚀 Production-Grade RAG System")
|
| 37 |
+
|
| 38 |
+
# --- Pydantic Model ---
|
| 39 |
+
class StructuredAnswer(BaseModel):
|
| 40 |
+
summary: str = Field(description="A concise summary.")
|
| 41 |
+
key_points: list[str] = Field(description="A list of key bullet points.")
|
| 42 |
+
confidence_score: float = Field(description="A 0.0 to 1.0 confidence score.")
|
| 43 |
+
|
| 44 |
+
# --- Caching and Initialization ---
|
| 45 |
+
@st.cache_resource
|
| 46 |
+
def initialize_services():
|
| 47 |
+
print("Step 2: Entering initialize_services function...")
|
| 48 |
+
if not all([PINECONE_API_KEY, GROQ_API_KEY, COHERE_API_KEY]):
|
| 49 |
+
raise ValueError("An API key is missing!")
|
| 50 |
+
|
| 51 |
+
print("Step 2a: Initializing embedding model...")
|
| 52 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 53 |
+
print("Step 2a: SUCCESS")
|
| 54 |
+
|
| 55 |
+
print("Step 2b: Initializing Pinecone client...")
|
| 56 |
+
pinecone = Pinecone(api_key=PINECONE_API_KEY)
|
| 57 |
+
host = "https://rag-chatbot-sg8t88c.svc.aped-4627-b74a.pinecone.io"
|
| 58 |
+
index = pinecone.Index(host=host)
|
| 59 |
+
print("Step 2b: SUCCESS")
|
| 60 |
+
|
| 61 |
+
print("Step 2c: Creating PineconeVectorStore object...")
|
| 62 |
+
vectorstore = PineconeVectorStore(index=index, embedding=embeddings)
|
| 63 |
+
print("Step 2c: SUCCESS")
|
| 64 |
+
|
| 65 |
+
print("Step 2d: Initializing Cohere Re-ranker...")
|
| 66 |
+
base_retriever = vectorstore.as_retriever(search_kwargs={'k': 20})
|
| 67 |
+
compressor = CohereRerank(cohere_api_key=COHERE_API_KEY, top_n=5)
|
| 68 |
+
reranking_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=base_retriever)
|
| 69 |
+
print("Step 2d: SUCCESS")
|
| 70 |
+
|
| 71 |
+
print("Step 2e: Initializing Groq LLM...")
|
| 72 |
+
llm = ChatGroq(temperature=0, model_name="llama3-70b-8192", api_key=GROQ_API_KEY)
|
| 73 |
+
print("Step 2e: SUCCESS")
|
| 74 |
+
|
| 75 |
+
print("Step 2: All services initialized successfully.")
|
| 76 |
+
return reranking_retriever, llm
|
| 77 |
+
|
| 78 |
+
print("Step 3: Calling initialize_services...")
|
| 79 |
+
retriever, llm = initialize_services()
|
| 80 |
+
print("Step 3: SUCCESS, services are loaded.")
|
| 81 |
+
|
| 82 |
+
# --- RAG Chain Definition ---
|
| 83 |
+
print("Step 4: Defining RAG chain...")
|
| 84 |
+
pydantic_parser = PydanticOutputParser(pydantic_object=StructuredAnswer)
|
| 85 |
+
format_instructions = pydantic_parser.get_format_instructions()
|
| 86 |
+
template = """
|
| 87 |
+
You are a world-class analysis engine. Your task is to provide a structured, factual answer based *only* on the following context.
|
| 88 |
+
Synthesize the information from all context snippets. Do not use any outside knowledge.
|
| 89 |
+
|
| 90 |
+
Context:
|
| 91 |
+
{context}
|
| 92 |
+
|
| 93 |
+
Question:
|
| 94 |
+
{question}
|
| 95 |
+
|
| 96 |
+
Follow these formatting instructions precisely:
|
| 97 |
+
{format_instructions}
|
| 98 |
+
"""
|
| 99 |
+
prompt = PromptTemplate(
|
| 100 |
+
template=template,
|
| 101 |
+
input_variables=["context", "question"],
|
| 102 |
+
partial_variables={"format_instructions": format_instructions}
|
| 103 |
+
)
|
| 104 |
+
rag_chain = (
|
| 105 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
| 106 |
+
| prompt
|
| 107 |
+
| llm
|
| 108 |
+
| pydantic_parser
|
| 109 |
+
)
|
| 110 |
+
print("Step 4: SUCCESS")
|
| 111 |
+
|
| 112 |
+
# --- UI Rendering ---
|
| 113 |
+
print("Step 5: Starting to render Streamlit UI...")
|
| 114 |
+
st.success("System is ready. Ask your question below.")
|
| 115 |
+
query = st.text_input("Enter your question:", key="query_input")
|
| 116 |
+
|
| 117 |
+
if query:
|
| 118 |
+
with st.spinner("Processing..."):
|
| 119 |
+
structured_answer = rag_chain.invoke(query)
|
| 120 |
+
st.write("### Answer")
|
| 121 |
+
# ... rest of UI ...
|
| 122 |
+
print("Step 5: SUCCESS, UI is rendered.")
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
# If ANY error happens during startup, it will be printed here
|
| 126 |
+
print(f"!!!!!!!!!! A FATAL ERROR OCCURRED !!!!!!!!!!")
|
| 127 |
+
import traceback
|
| 128 |
+
print(traceback.format_exc())
|
| 129 |
+
st.error(f"A fatal error occurred during startup. Please check the container logs. Error: {e}")
|