Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,8 @@ subprocess.run(["pip", "install", "datasets"])
|
|
4 |
subprocess.run(["pip", "install", "transformers"])
|
5 |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
6 |
|
7 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
8 |
-
from datasets import load_dataset
|
9 |
import gradio as gr
|
|
|
10 |
|
11 |
# Load model and processor
|
12 |
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
|
@@ -16,16 +15,21 @@ model.config.forced_decoder_ids = None
|
|
16 |
# Function to perform ASR on audio data
|
17 |
def transcribe_audio(audio_data):
|
18 |
# Process audio data using the Whisper processor
|
19 |
-
input_features = processor(audio_data, return_tensors="pt").input_features
|
20 |
|
21 |
# Generate token ids
|
22 |
predicted_ids = model.generate(input_features)
|
23 |
-
|
24 |
# Decode token ids to text
|
25 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
26 |
-
|
27 |
return transcription[0]
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
# Create Gradio interface
|
30 |
-
audio_input = gr.Audio(
|
31 |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()
|
|
|
4 |
subprocess.run(["pip", "install", "transformers"])
|
5 |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
6 |
|
|
|
|
|
7 |
import gradio as gr
|
8 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
9 |
|
10 |
# Load model and processor
|
11 |
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
|
|
|
15 |
# Function to perform ASR on audio data
|
16 |
def transcribe_audio(audio_data):
|
17 |
# Process audio data using the Whisper processor
|
18 |
+
input_features = processor(audio_data, return_tensors="pt").input_features
|
19 |
|
20 |
# Generate token ids
|
21 |
predicted_ids = model.generate(input_features)
|
22 |
+
|
23 |
# Decode token ids to text
|
24 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
25 |
+
|
26 |
return transcription[0]
|
27 |
|
28 |
+
# Custom preprocessing function
|
29 |
+
def preprocess_audio(audio_data):
|
30 |
+
# Apply any custom preprocessing to the audio data here if needed
|
31 |
+
return audio_data
|
32 |
+
|
33 |
# Create Gradio interface
|
34 |
+
audio_input = gr.Audio(preprocess=preprocess_audio)
|
35 |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()
|