Spaces:
Sleeping
Sleeping
import subprocess | |
subprocess.run(["pip", "install", "gradio", "--upgrade"]) | |
subprocess.run(["pip", "install", "transformers"]) | |
subprocess.run(["pip", "install", "torchaudio", "--upgrade"]) | |
import numpy as np | |
import gradio as gr | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# Load Whisper ASR model and processor | |
model_name = "openai/whisper-small" | |
processor = WhisperProcessor.from_pretrained(model_name, sampling_rate=44100) | |
model = WhisperForConditionalGeneration.from_pretrained(model_name) | |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe") | |
def transcribe_audio(input_audio): | |
if isinstance(input_audio, int): | |
# Handle the case where input_audio is an integer (error fallback) | |
input_audio_np = np.array([0.0]) # You can adjust this default value | |
else: | |
input_audio_np = np.array(input_audio.data) | |
input_features = processor(input_audio_np, return_tensors="pt").input_features | |
# Generate token ids | |
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) | |
# Decode token ids to text | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription[0] | |
audio_input = gr.Audio(sources=["microphone"]) | |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch() | |