practiceAI / app.py
MusIre's picture
Update app.py
5d9c950
raw
history blame
1.47 kB
import subprocess
subprocess.run(["pip", "install", "gradio", "--upgrade"])
subprocess.run(["pip", "install", "transformers"])
subprocess.run(["pip", "install", "torchaudio", "--upgrade"])
import gradio as gr
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torchaudio
# Load model and processor
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian")
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian")
# Function to perform ASR on audio data
def transcribe_audio(audio_data):
# Convert audio data to mono and normalize
audio_data = torchaudio.transforms.Mono()(audio_data)
audio_data = torchaudio.functional.gain(audio_data, gain_db=5.0)
# Resample if needed (Wav2Vec2 model requires 16 kHz sampling rate)
if audio_data[1] != 16000:
audio_data = torchaudio.transforms.Resample(audio_data[1], 16000)(audio_data[0])
# Apply custom preprocessing to the audio data if needed
input_values = processor(audio_data[0].numpy(), return_tensors="pt").input_values
# Perform ASR
with torch.no_grad():
logits = model(input_values).logits
# Decode the output
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
return transcription[0]
# Create Gradio interface
audio_input = gr.Audio()
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()