Spaces:
Sleeping
Sleeping
import subprocess | |
subprocess.run(["pip", "install", "gradio", "--upgrade"]) | |
subprocess.run(["pip", "install", "transformers"]) | |
subprocess.run(["pip", "install", "torchaudio", "--upgrade"]) | |
import gradio as gr | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import torchaudio | |
# Load model and processor | |
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian") | |
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian") | |
# Function to perform ASR on audio data | |
def transcribe_audio(audio_data): | |
# Convert audio data to mono and normalize | |
audio_data = torchaudio.transforms.Mono()(audio_data) | |
audio_data = torchaudio.functional.gain(audio_data, gain_db=5.0) | |
# Resample if needed (Wav2Vec2 model requires 16 kHz sampling rate) | |
if audio_data[1] != 16000: | |
audio_data = torchaudio.transforms.Resample(audio_data[1], 16000)(audio_data[0]) | |
# Apply custom preprocessing to the audio data if needed | |
input_values = processor(audio_data[0].numpy(), return_tensors="pt").input_values | |
# Perform ASR | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
# Decode the output | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids) | |
return transcription[0] | |
# Create Gradio interface | |
audio_input = gr.Audio() | |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch() | |