SAR2COLOR / app.py
Murali2003's picture
Update app.py
ac848cf verified
import os
import onnxruntime
import gradio as gr
import numpy as np
from PIL import Image
onnx_model_path = "sarcoloring.onnx"
sess = onnxruntime.InferenceSession(onnx_model_path)
def predict(input_image):
input_image = input_image.resize((256, 256))
input_image = np.array(input_image).transpose(2, 0, 1)
input_image = input_image.astype(np.float32) / 255.0
input_image = (input_image - 0.5) / 0.5
input_image = np.expand_dims(input_image, axis=0)
# Run the model
inputs = {sess.get_inputs()[0].name: input_image}
output = sess.run(None, inputs)
output_image = output[0].squeeze().transpose(1, 2, 0)
output_image = (output_image + 1) / 2 # [0,1]
output_image = (output_image * 255).astype(np.uint8)
return Image.fromarray(output_image)
example_images = [[os.path.join("examples", fname)] for fname in os.listdir("examples")]
iface = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
examples=example_images
)
iface.launch()